-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
154 lines (119 loc) · 5.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Required Libraries
import torch
# Local imports
import hparams
from hfc import HFC
import dataset
# For plots --- put somewhere else TODO
import dsp
from torch.nn import functional as F
import numpy as np
import os
from matplotlib import pyplot as plt
import lightning as pl
def train_lightning():
hp = hparams.get_hparams()
d = dataset.get_dataset(hp)
hfc = HFC(hp)
dataloader, valid_dataloader = dataset.get_training_dataloaders(
d, hp.train_batch_size, hp.valid_batch_size, hp.validation_split)
trainer = pl.Trainer(devices=1, limit_train_batches=100, max_epochs=1)
trainer.fit(model=hfc, train_dataloaders=dataloader)
def train():
hp = hparams.get_hparams()
d = dataset.get_dataset(hp)
fe = dsp.FeatureEngineer(hp)
print(hp)
hfc = HFC(hp)
dataloader, valid_dataloader = dataset.get_training_dataloaders(
d, hp.train_batch_size, hp.valid_batch_size, hp.validation_split)
if hp.use_cuda:
hfc.cuda()
if hp.save_path == '':
save_path = os.path.join('outputs', hp.cv)
else:
save_path = os.path.join('outputs', hp.save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
logfile = os.path.join(save_path, 'log.txt')
l = open(logfile, 'w')
best_loss = float('inf')
for e in range(hp.epochs):
for i, datum in enumerate(dataloader):
hfc.set_input(*datum)
hfc.optimize_parameters()
#print('step = {}, g_losses = {}, leakage = {}'.format(i, hfc.g_losses.item(), hfc.leakage_loss.item()))
if i % 200 == 0:
hfc.eval()
val_combiner_losses = []
val_leakage_losses = []
val_finder_losses = []
fidel_losses = []
for valid_datum in valid_dataloader:
cv, f0, is_voiced, x = valid_datum
hfc.set_input(*valid_datum)
hfc()
# Calculate losses using backward methods (which don't actually backprop) rename later?
hfc.backward_G()
hfc.backward_F()
val_finder_losses.append(hfc.finder_loss.item())
val_combiner_losses.append(hfc.combiner_loss.item())
val_leakage_losses.append(hfc.leakage_loss.item())
if d.fidel is not None:
out_cv = d.fidel(fe.mel_to_s(hfc.controlled.transpose(1,2).cpu().detach()))
fidel_losses.append(F.mse_loss(out_cv, cv).item())
plot_spects(hp, hfc.cv, hfc.pred_cv, hfc.f0, hfc.hidden, hfc.controlled, hfc.x,
'plotty_{}_{}'.format(e, i), save_path)
v_f_loss = np.mean(val_finder_losses)
v_c_loss = np.mean(val_combiner_losses)
v_l_loss = np.mean(val_leakage_losses)
if d.fidel is not None:
fidel_loss = np.mean(fidel_losses)
else:
fidel_loss = 'na'
if v_c_loss > best_loss:
hfc.anneal()
else:
best_loss = v_c_loss
torch.save(hfc.state_dict(), os.path.join(save_path, 'hfc.pt'))
print('step = {}, c = {}, l = {}, f = {}, fidelity = {}'.format(i, v_c_loss, v_l_loss, v_f_loss, fidel_loss))
l.write('step = {}, c = {}, l = {}, f = {}, fidelity = {}\n'.format(i, v_c_loss, v_l_loss, v_f_loss, fidel_loss))
l.flush()
hfc.train()
def plot_spects(hp, cv, est_control_var, f0, source, output, target, savename='', directory='.'):
nsource = source.cpu().detach().numpy().squeeze().T
noutput = output.cpu().detach().numpy().squeeze().T
ncv = cv.cpu().detach().numpy().squeeze().T
nf0 = f0.cpu().detach().numpy().squeeze().T
n_est_control = est_control_var.cpu().detach().numpy().squeeze().T
ntarget = target.cpu().detach().numpy().squeeze().T
num_freq_bins, numframes = nsource.shape
extent = None # (0.0, numframes / hop_length, 0.0, num_freq_bins - 1.)
cv_extent = None
plt.rcParams.update({'font.size': 5})
fig, (ax0, ax1, ax2, ax3, ax4, ax5) = plt.subplots(6, 1)
for ax in [ax1, ax2, ax3, ax4]:
ax.set_xlabel('Time step')
ax.set_ylabel('Bin no.')
aspect = None
cv_aspect = None
ax0.set_title('Interpolated control variable onehot encoding')
cvplot = ax0.imshow(ncv, origin='lower', extent=cv_extent, interpolation="none", aspect=cv_aspect)
ax1.set_title('Interpolated control variable estimated')
cv_plot = ax1.imshow(n_est_control, origin='lower', extent=cv_extent, interpolation="none", aspect=cv_aspect)
ax2.set_title('Hidden Encoding')
inplot = ax2.imshow(nsource, origin='lower', extent=extent, interpolation="none", aspect=aspect)
ax3.set_title('Output mel spectrogram')
outplot = ax3.imshow(noutput, origin='lower', extent=extent, interpolation="none", aspect=aspect)
ax4.set_title('Target mel spectrogram')
ax4.imshow(ntarget, origin='lower', extent=extent, interpolation="none", aspect=aspect)
ax5.set_title('input f0')
ax5.imshow(nf0, origin='lower', extent=extent, interpolation="none", aspect=aspect)
plt.tight_layout()
if savename == '':
plt.show()
else:
plt.savefig(os.path.join(directory, savename), dpi=1000)
plt.close()
if __name__ == '__main__':
train_lightning()