forked from silverlight6/Ultrasound_Modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTBI_SegNet_Transfer.py
226 lines (170 loc) · 7.07 KB
/
TBI_SegNet_Transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import tensorflow as tf
import numpy as np
from tensorflow import keras
from datetime import datetime
from matplotlib import pyplot as plt
training_data_path = '/home/silver/Documents/TBI_NNs/Datasets/NPFiles/PolarTimeData/TrainingData.npy'
testing_data_path = '/home/silver/Documents/TBI_NNs/Datasets/NPFiles/PolarTimeData/ValidationData.npy'
# channel 0: outside the brain
# channel 1: no-bleed
# channel 2: bleed
OUTPUT_CHANNELS = 3
BATCH_SIZE = 20
BUFFER_SIZE = 100
xdim = 240
ydim = 80
class_factor = [1.475, 0.678, 7.847]
def preProcess(input_data):
t_y = tf.gather(input_data, 0, axis=3) # weeding out the labels
t_x = tf.gather(input_data, list(range(1, 4)), axis=3) # weeding out the x data
t_y = tf.cast(t_y, dtype=tf.int32) # choose int32 types for the data
t_y = tf.one_hot(t_y, depth=OUTPUT_CHANNELS) # convert to 3 bits to represent classes
return t_x, t_y # return input and output
# load the numpy arrays into TensorFlow dataset object
train_data = tf.data.Dataset.from_tensor_slices(np.load(training_data_path))
test_data = tf.data.Dataset.from_tensor_slices(np.load(testing_data_path))
# use map to call the function "preProcess" on each training item and testing item
train_data = train_data.map(preProcess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
test_data = test_data.map(preProcess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_data.shuffle(BUFFER_SIZE) # shuffle the data
train_data.batch(BATCH_SIZE) # make data into batches, based on batch size
print(train_data)
test_data.batch(BATCH_SIZE) # make data into batches, based on batch size
image_shape = [xdim, ydim, 3]
def upsample(filters, size, apply_dropout=False):
initializer = keras.initializers.RandomNormal(0., 0.02)
result = keras.Sequential()
result.add(
keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
# result.add(keras.layers.BatchNormalization())
if apply_dropout:
result.add(keras.layers.Dropout(0.5))
result.add(keras.layers.LeakyReLU())
return result
base_model = tf.keras.applications.InceptionV3(input_shape=[xdim, ydim, 3], include_top=False)
def Mask_Gen():
inputs = keras.layers.Input(shape=[xdim, ydim, 3])
# print(base_model.summary())
print(len(base_model.layers))
# Use the activations of these layers
layer_names = [
'activation_2', # 117x37
'activation_4', # 56x16
'mixed2', # 27x7
'mixed7', # 13x3
'mixed10' # 6x1
]
layers = [base_model.get_layer(name).output for name in layer_names]
# Create the feature extraction model
down_stack = tf.keras.Model(inputs=base_model.input, outputs=layers)
down_stack.trainable = False
# down_stack.trainable = True
# decoder layers
up_stack = [
upsample(256, 4, apply_dropout=True), # (bs, 6, 1, 1024)
upsample(256, 4, apply_dropout=True), # (bs, 13, 3, 1024)
upsample(256, 4, apply_dropout=True), # (bs, 27, 7, 1024)
upsample(128, 4), # (bs, 56, 16, 768)
upsample(64, 4), # (bs, 117, 37, 640)
]
padding_stack = [
keras.layers.ZeroPadding2D(((0, 1), (1, 0))),
keras.layers.ZeroPadding2D(((0, 1), (1, 0))),
keras.layers.ZeroPadding2D((1, 1)),
keras.layers.ZeroPadding2D(((2, 3), (3, 2))),
]
initializer = tf.random_normal_initializer(0., 0.02)
# "deconvolutional" operation, enlarging/expanding the image
last = keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
strides=2,
padding='same',
kernel_initializer=initializer,
activation='softmax') # (bs, 256, 64, 4)
x = inputs
# x = keras.layers.Conv2D(3, 5, strides=1, padding='same',
# use_bias=False)(x)
# iterate over the downsample layers and connect them together
skips = down_stack(x)
x = skips[-1]
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip, pad in zip(up_stack, skips, padding_stack):
x = up(x)
x = pad(x)
x = keras.layers.Concatenate()([x, skip])
x = keras.layers.ZeroPadding2D(((1, 2), (2, 1)))(x)
x = last(x)
return keras.Model(inputs=inputs, outputs=x)
seg_model = Mask_Gen()
# print(seg_model.summary())
seg_model_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
epochs = 30
tf.keras.utils.plot_model(seg_model, to_file='inception_total.png', show_shapes=True)
log_dir = "logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
stop_callbacks = [
keras.callbacks.EarlyStopping(
# Stop training when `val_loss` is no longer improving
monitor="val_loss",
min_delta=1e-4,
patience=7,
verbose=1,
),
keras.callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.3,
patience=3,
min_lr=0.000001,
verbose=1
)
]
def generate_images(model, test_input, target):
prediction = model(test_input, training=True)
plt.figure(figsize=(15, 15))
display_list = [target[0], prediction[0]]
title = ['Ground Truth', 'Predicted Image']
for i in range(2):
plt.subplot(1, 2, i+1)
plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i][:, :, -1])
plt.axis('off')
plt.show()
def my_loss_cat(y_true, y_pred):
CE = 0.0
scale_factor = 1 / tf.reduce_sum(y_true[:, :, :, :])
for c in range(0, OUTPUT_CHANNELS):
# print(y_pred[:, :, :, c])
CE += tf.reduce_sum(tf.multiply(y_true[:, :, :, c], tf.cast(
tf.math.log(y_pred[:, :, :, c]), tf.float64))) * scale_factor * class_factor[c]
return CE * -1 * OUTPUT_CHANNELS
seg_model.compile(optimizer=seg_model_optimizer,
loss=keras.losses.CategoricalCrossentropy(from_logits=False),
metrics=['accuracy', 'Recall'])
seg_model.fit(train_data,
batch_size=BATCH_SIZE,
shuffle=True,
validation_data=test_data,
epochs=epochs,
callbacks=[tensorboard_callback, stop_callbacks])
for testx, testy in test_data.take(10):
generate_images(seg_model, testx, testy)
seg_model_optimizer = tf.keras.optimizers.Adam(1e-5, beta_1=0.5)
base_model.trainable = True
seg_model.trainable = True
seg_model.compile(optimizer=seg_model_optimizer,
loss=keras.losses.CategoricalCrossentropy(from_logits=False),
metrics=['accuracy', 'Recall'])
seg_model.fit(train_data,
batch_size=BATCH_SIZE,
shuffle=True,
validation_data=test_data,
epochs=epochs,
callbacks=[tensorboard_callback, stop_callbacks])
seg_model.save('tbi_seg_transfer.h5')
base_model.save('inception')
for testx, testy in test_data.take(10):
generate_images(seg_model, testx, testy)