This repository has been archived by the owner on Mar 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchess_model_tf.py
273 lines (215 loc) · 8.66 KB
/
chess_model_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from textwrap import wrap
import sys
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import InputLayer, Conv2D, MaxPooling2D, Flatten, Dropout, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.python.keras.engine.sequential import Sequential
import chess
sys.setrecursionlimit(20_000)
def load_model(path_of_weights: str) -> Sequential:
"""
Возвращает tf-модель с обученными весами.
:param path_of_weights: Путь к обученным весам.
:return: Обученная tf-модель.
"""
model = tf.keras.Sequential()
model.add(InputLayer(input_shape=(14, 8, 8)))
model.add(Conv2D(filters=28, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'))
model.add(Conv2D(filters=56, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'))
model.add(Flatten())
model.add(Dropout(rate=0.2))
model.add(Dense(28, activation='relu'))
model.add(Dense(1, activation='tanh'))
model.compile(optimizer=Adam(0.0005), loss='mean_squared_error')
model.load_weights(path_of_weights)
return model
CHESS_MODEL = load_model("best_weights.h5")
def _get_one_piece_matrix(board: chess.Board, piece_type: int, color: bool) -> list:
"""
Преобразовывает ситуацию на доске в матрицу для одного цвета и одной фигуры.
:param board: Шахматная доска.
:param piece_type: Тип фигуры.
:param color: Цвет игрока.
:return: Матрица.
"""
board_as_str = str(board.pieces(piece_type, color))
board_as_str = board_as_str.replace('\n', '').replace(' ', '').replace('.', '0')
board_as_matrix = [[int(cell) for cell in wrap(line, 1)] for line in wrap(board_as_str, 8)]
return board_as_matrix
def _cell_name_to_matrix_index(cell_name: str) -> int:
"""
Преобразуем UCI-название шахматного поля в индекс матрицы.
Пример: 'f8' --> 5; 'e1' --> 60.
:param cell_name: Имя клетки по UCI.
:return: Индекс клетки в матрице.
"""
letter = cell_name[0]
number = int(cell_name[1])
return 8 * (8 - number) + (ord(letter) - 97)
def _get_legal_moves_matrix(board: chess.Board, color: bool) -> list:
"""
Выдает матрицу возможных ходов для одного цвета.
:param board: Шахматная доска.
:param color: Цвет игрока.
:return: Матрица.
"""
board.turn = color
legal_moves_as_list = ['0'] * 64
for move in board.legal_moves:
board_index = _cell_name_to_matrix_index(move.uci()[2:])
legal_moves_as_list[board_index] = '1'
legal_moves_as_str = ''.join(legal_moves_as_list)
board_as_matrix = [[int(cell) for cell in wrap(line, 1)] for line in wrap(legal_moves_as_str, 8)]
return board_as_matrix
def board_to_input_data(board: chess.Board) -> np.array:
"""
Преобразуем шахматную доску в входные для модели np-данные.
:param board: Шахматная доска.
:return: Массив numpy.
"""
matrix = list()
for piece_type in chess.PIECE_TYPES:
matrix.append(_get_one_piece_matrix(board, piece_type, chess.WHITE))
matrix.append(_get_one_piece_matrix(board, piece_type, chess.BLACK))
matrix.append(_get_legal_moves_matrix(board, chess.WHITE))
matrix.append(_get_legal_moves_matrix(board, chess.BLACK))
np_matrix = np.array(matrix, dtype=np.float32)
return np.expand_dims(np_matrix, 0)
def get_model_scope(board: chess.Board) -> float:
"""
Выдает результат работы нейронной сети.
:param board: Шахматная доска.
:return: Выход нейронной сети.
"""
np_3d_matrix = board_to_input_data(board)
result = CHESS_MODEL.predict(np_3d_matrix)
return result[0][0]
class MinMaxTree:
"""
Реализация Min-Max дерева решений с альфа-бетта отсечениями.
"""
# Глубина поиска хода (глубина дерева).
_depth = 3
def __init__(self, board: chess.Board) -> None:
"""
Инициализация объекта класса.
:param board: Шахматная доска.
:return: None.
"""
self._board = board
def get_best_move(self) -> str:
"""
Находит лучший ход в данной шахматной ситуации.
:return: Шахматный ход san.
"""
best_move = {'score': 1, 'san': NotImplemented}
for move in self._board.legal_moves:
self._board.push(move)
score = self._get_scope_of_move()
self._board.pop()
if score < best_move['score']:
best_move = {'score': score, 'san': move}
result_as_san = self._board.san(best_move['san'])
return str(result_as_san)
def _get_scope_of_move(self, board: chess.Board = NotImplemented, depth: int = NotImplemented,
alpha: float = -np.inf, beta: float = np.inf, max_this: bool = False) -> float:
"""
Выдает оценочное значение для хода.
:param board: Шахматная доска.
:param depth: Глубина дерева.
:param alpha: Параметр ALPHA для отсечения плохих ходов.
:param beta: Параметр BETA для отсечения плохих ходов.
:param max_this: Ответ на вопрос: Максимизировать этот слой дерева?
:return: Оценочное значение хода.
"""
try:
if board is NotImplemented:
board = self._board
if depth is NotImplemented:
depth = self._depth - 1
elif not depth:
return get_model_scope(board)
if self._board.is_game_over():
return get_model_scope(board)
if max_this:
max_score = -np.inf
for move in board.legal_moves:
board.push(move)
score = self._get_scope_of_move(board, depth - 1, alpha, beta, False)
board.pop()
max_score = max(max_score, score)
alpha = max(alpha, score)
if beta <= alpha:
break
return max_score
else:
min_score = np.inf
for move in board.legal_moves:
board.push(move)
score = self._get_scope_of_move(board, depth - 1, alpha, beta, True)
board.pop()
min_score = min(min_score, score)
beta = min(beta, score)
if beta <= alpha:
break
return min_score
except:
print(123)
# def find_best_move(board: chess.Board, depth_of_min_max_tree: int, alpha: int, beta: int, max_this: bool):
# """
#
# :param board:
# :param depth_of_min_max_tree:
# :param alpha:
# :param beta:
# :param max_this:
# :return:
# """
#
#
# def minimax(board, depth, alpha, beta, maximizing_player):
# if depth == 0 or board.is_game_over():
# return get_model_scope(board)
#
#
# if maximizing_player:
# max_eval = -np.inf
# for move in board.legal_moves:
# board.push(move)
# eval = minimax(board, depth - 1, alpha, beta, False)
# board.pop()
# max_eval = max(max_eval, eval)
# alpha = max(alpha, eval)
# if beta <= alpha:
# break
# return max_eval
# else:
# min_eval = np.inf
# for move in board.legal_moves:
# board.push(move)
# eval = minimax(board, depth - 1, alpha, beta, True)
# board.pop()
# min_eval = min(min_eval, eval)
# beta = min(beta, eval)
# if beta <= alpha:
# break
# return min_eval
#
#
# # this is the actual function that gets the move from the neural network
# def get_best_ai_move(board, depth):
# min_move = None
# min_eval = np.inf
#
# for move in board.legal_moves:
# board.push(move)
# eval = minimax(board, depth - 1, -np.inf, np.inf, True)
# board.pop()
# if eval < min_eval:
# min_eval = eval
# min_move = move
#
# return str(board.san(min_move))