-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
234 lines (197 loc) · 8.31 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import logging
from typing import Any, Dict, List, Tuple, Union
import torch
from torch.utils.data import (
Dataset,
DataLoader,
RandomSampler,
SequentialSampler
)
from transformers import AdamW, get_linear_schedule_with_warmup
from tasks.task_base import InputExample
from prediction_object import SeqPredictionObject
class Trainer:
def __init__(
self,
model: torch.nn.Module,
args,
data_collator=None,
compute_metrics=None):
self.model = model
self.args = args
self.data_collator = data_collator
self.compute_metrics = compute_metrics
self.optimizer = None
self.lr_scheduler = None
def _create_optimizer_and_scheduler(
self,
num_training_steps: int
):
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if
not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if
any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.args.freeze_embeddings:
for param in list(self.model.encoder.embeddings.parameters()):
param.requires_grad = False
logging.info(
f"Froze Embedding Layer : "
f"{[n for n, _ in self.model.encoder.embeddings.named_parameters()]}"
)
# freeze_layers is a string "1,2,3" representing layer number
if self.args.freeze_layers is not "":
layer_indexes = [int(x) for x in self.args.freeze_layers.split(",")]
for layer_idx in layer_indexes:
for param in list(self.model.encoder.encoder.layer[layer_idx].parameters()):
param.requires_grad = False
logging.info(f"Froze Layer: {layer_idx}")
if self.args.bitfit:
# freeze all non-bias transformer parameters
for name, param in self.model.encoder.named_parameters():
if "bias" not in name:
param.requires_grad = False
self.optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.args.learning_rate,
)
warmup_steps = int(num_training_steps * self.args.warmup_proportion)
self.lr_scheduler = get_linear_schedule_with_warmup(
self.optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps
)
def _get_train_data_loader(self, train_dataset: Dataset):
return DataLoader(
train_dataset,
batch_size=self.args.train_batch_size,
sampler=RandomSampler(train_dataset),
collate_fn=self.data_collator,
)
def _get_evaluation_data_loader(self, dataset: Dataset):
return DataLoader(
dataset,
batch_size=self.args.valid_batch_size,
sampler=SequentialSampler(dataset),
collate_fn=self.data_collator,
)
def _prepare_inputs(
self,
inputs: Dict[str, Union[torch.Tensor, Any]]
) -> Tuple[List[InputExample], Dict[str, Union[torch.Tensor, Any]]]:
tensor_dict = {}
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
tensor_dict[k] = v.to(self.args.device)
examples = inputs['examples']
return examples, tensor_dict
def _training_step(
self,
inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
self.model.train()
_, inputs = self._prepare_inputs(inputs)
outputs = self.model(**inputs)
loss = outputs['loss']
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
loss.backward()
return loss.detach()
def _prediction_step(
self,
inputs: Dict[str, Union[torch.Tensor, Any]],
) -> List[SeqPredictionObject]:
examples, inputs = self._prepare_inputs(inputs)
with torch.no_grad():
outputs = self.model.predict(**inputs)
seq_preds = outputs['predictions']
assert len(seq_preds) == len(examples)
for ex, sp in zip(examples, seq_preds):
sp.example = ex
return seq_preds
def _prediction_loop(
self,
dataloader: DataLoader,
description: str
):
logging.info(f"***** Running {description} *****")
logging.info(f" Num batches = {len(dataloader)}")
logging.info(f" Batch size = {dataloader.batch_size}")
preds: List[SeqPredictionObject] = []
self.model.eval()
for batch_idx, batch in enumerate(dataloader):
seq_preds = self._prediction_step(batch)
preds.extend(seq_preds)
try:
metrics = self.compute_metrics([p.preds for p in preds], [p.example for p in preds])
except:
logging.warning('At test time, the gold data can be empty.')
metrics = None
return preds, metrics
def dump_best_metrics(self, metrics) -> None:
metrics_file = os.path.join(self.args.output_dir, 'best_metrics.csv')
f1 = metrics.f1 # only dumping f1
with open(metrics_file, 'w', encoding="utf-8") as f:
print(f"f1,{f1}", file=f)
def train(
self,
train_dataset: Dataset,
valid_dataset: Dataset,
) -> None:
train_dataloader = self._get_train_data_loader(train_dataset)
# TODO: Check gradient_accumulation step logic
if self.args.gradient_accumulation_steps != 1:
raise NotImplementedError(f'Must have {self.args.gradient_accumulation_steps} == 1')
num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
t_total = int(num_update_steps_per_epoch * self.args.num_train_epochs)
self._create_optimizer_and_scheduler(num_training_steps=t_total)
logging.info("***** Running training *****")
logging.info(f" Num batches = {len(train_dataloader)}")
logging.info(f" Num Epochs = {self.args.num_train_epochs}")
logging.info(f" Batch size per device = {self.args.train_batch_size}")
logging.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
logging.info(f" Total optimization steps = {t_total}")
self.model.zero_grad()
best_metrics = None
for epoch_idx in range(self.args.num_train_epochs):
tr_loss = torch.tensor(0.0).to(self.args.device)
for batch_idx, batch in enumerate(train_dataloader):
tr_loss += self._training_step(batch)
if (batch_idx + 1) % self.args.gradient_accumulation_steps == 0 \
or batch_idx == len(train_dataloader) - 1:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.lr_scheduler.step()
self.model.zero_grad()
average_loss = tr_loss.item() / len(train_dataloader)
logging.info(f'epoch {epoch_idx} : average loss = {average_loss}')
try:
metrics = self.evaluate(valid_dataset)[-1]
except:
logging.warning('Can happen that some training file has no data.')
metrics = None
if best_metrics is None or (
metrics is not None and metrics.is_better_than(best_metrics)
):
best_metrics = metrics
torch.save(self.model.state_dict(), self.args.best_model_file)
self.dump_best_metrics(best_metrics)
# save model/optimizer/scheduler for continued training
def evaluate(self, dataset: Dataset):
data_loader = self._get_evaluation_data_loader(dataset)
preds, metrics = self._prediction_loop(
data_loader,
description="Evaluation"
)
logging.info(metrics)
return preds, metrics