-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplwin.c
1055 lines (944 loc) · 39.7 KB
/
plwin.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/****************************************************************************
plwin.c -- decodump routine for decoding fft
*****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
void print_tid (double diff_time, int nth, char *decoder);
double get_tid ();
typedef struct
{
float re;
float im;
} DSPCMPLX;
typedef struct
{
int16_t re;
int16_t im;
} DSPCMPLXSHORT;
#ifdef AOCL
#include "/home/kstdev/amd/aocl/2.0/amd-fftw/include/fftw3.h"
#elif MKL
//#include <mkl_dfti.h>
#include "fftw3_mkl.h"
//fftw3_mkl.verbose = 0;
#else
#include <fftw3.h>
#endif
#define CPU_SPEED 1.e9
#ifdef __linux__
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#define NANOSEC 1000000000
unsigned long
gethrtime (void)
{
struct timespec ts;
if (clock_gettime (CLOCK_MONOTONIC_RAW, &ts) != 0)
return (-1);
return ((ts.tv_sec * NANOSEC) + ts.tv_nsec);
}
#endif
#define cl_min(a,b) (((a) < (b)) ? (a) : (b))
#include <pthread.h>
struct pth
{
int nth; /* ew: Number of threads */
ulong th; /* ew: Is increased when starting serveral threads, leads to different values beeing set when calling the fft functions */
ulong k1; /* ew: Is used for segmenting itne intervals between k1 and k2 when calling the fft-functions (i.e. clutter, plwin_loop, ...) */
/* ew: Is in clutter used for segmenting the intervals of pth.in that are used */
ulong k2; /* ew: See comment on k1 */
ulong nr_win; /* Number of different subsets in the code (number of data windows). ew - data window equals one coded pulse */
int *windows; /* ew: */
ulong win_len; /* Number of bits in the code */
ulong nr_gates; /* ew: */
ulong res_mult;
ulong nr_rep;
ulong nout;
ulong noud;
DSPCMPLXSHORT *in;
DSPCMPLX *out;
ulong nr_undec;
ulong undec1;
ulong undec2;
ulong frac;
int nex;
int fft_len;
ulong nr_lags;
float *out_t;
ulong nr_samp;
ulong nr_pp;
ulong do_pp;
ulong nr_blk;
ulong nr_clutter;
int notch;
int fft_clutter;
ulong nr_ugates;
ulong lower_tail;
ulong upper_tail;
ulong nr_virtsamp;
ulong debug;
int fft_len_2;
int fft_dlayer;
ulong dl_short;
ulong dl_long;
ulong nr_dgates;
DSPCMPLX *fir_samp;
fftwf_complex *inf;
fftwf_plan p;
fftwf_plan p_2;
fftwf_plan pd;
fftwf_plan pc;
fftwf_plan pb;
fftwf_plan pb_2;
fftwf_plan pdb;
fftwf_plan pcb;
};
void *plwin_clutter (struct pth *);
void *plwin_loop (struct pth *);
void *pldec_loop (struct pth *);
void *pldlayer (struct pth *);
/* nbits is the number of integer values supplied by the user */
/* in is a pointer to the complex input data vector */
/* out is a pointer to complex output data vector */
int
decoder_6 (ulong nbits, int *par, ulong fbits, float *fpar,
DSPCMPLXSHORT * in, DSPCMPLX * out, double *upar)
/* decoder_6 FFT version 3 fftw */
{
/* par: npar fft_len nr_gates nr_undec nr_win nr_rep nr_samp win_len frac res_mult nr_cal*/
/* the rest is windows (nbits=nfft*nr_win+npar) */
/*
* ew: nbits is set from prface; nb=p[0]+p[4]*p[7], is parameters + (number pulses in pulse group (aka "data windwos" aka "subsets in code"))*(length of bitcode)
* *par is parameters for experiment and analysis
* fbits is set from prface to a hard 0
* *fpar always seems to be set to NULL
* *in is set by prface as in=(DSPCMPLXSHORT *)malloc(nin*sizeof(DSPCMPLXSHORT)), nin=(p[6]+p[10])*p[5];
* that is ((samples per subcycle (aka pulse))+(extra samples in the power profile))*(total number of subcycles)
* The input signal is mixed to remove the carrier frequency, the spectrum is around 0 at input to this file
* *out is set by prface as out=(DSPCMPLX *)malloc(nout*sizeof(DSPCMPLX)),
* where nout=((p[2]+1)*p[8]+p[2]*p[1]/2+p[3]*p[8])*p[9]+(p[6]+p[10])*p[9]+p[19]*(p[17]+p[18]+1);
* *upar is set by prface as upar=(double *)malloc(20*sizeof(double)); upar[0]=0;
*/
float *out_tf;
ulong i, j, k, k2, npar, n_deco, maxthreads, ninf, float_notch =
0, nth_clutt;
struct pth pth; /* ew: Instance of struct pth, named pth */
#ifdef __linux__
//unsigned long long int start[]={0,0,0,0,0}; /* ew: Array for timtestams for evalutaing program runtime */
double start[] = { 0, 0, 0, 0, 0 }; /* ew: Array for timtestams for evalutaing program runtime */
#else
hrtime_t start[] = { 0, 0, 0, 0, 0 };
#endif
//start[0]=gethrtime();
start[0] = get_tid ();
/* ew: Comments on pth below from file plwin_par-fileinfo.txt */
/* Total number of lines in par-file: 24+nr_win*win_len */
npar = par[0]; /* Number of parameters in the parameter file. ew - Does not include bit code */
pth.fft_len = par[1]; /* Size of fft */
pth.nr_gates = par[2]; /* Number of range gates */
pth.nr_undec = par[3]; /* Number of undecoded gates */
pth.nr_win = par[4]; /* Number of different subsets in the code (number of data windows). ew - data window equals one coded pulse */
/* Number of pulses per pulese group */
pth.nr_rep = par[5]; /* Total number of subcycles in one integration period.
* how many pulses in total, each pulse group is repeted
* = nr pulses per group * reptetitions of the pulse group */
pth.nr_samp = par[6]; /* Number of samples per subcycle */
pth.win_len = par[7]; /* Number of bits in the code */
pth.frac = par[8]; /* Number of samples per code bit */
pth.res_mult = par[9]; /* Number of subsets of code (normally 1) */
pth.nr_pp = pth.nr_samp + par[10]; /* par[10] = nr_pp - nr_samp Number of extra samples in the power profile */
/* nr_pp = Number of samples in the power profile = samples per subcycle (aka data window, pulse) + extra samples */
pth.lower_tail = par[11] * pth.frac; /* lower_tail / frac Number of padded zeros at lower edge, code bit units */
pth.upper_tail = par[12] * pth.frac; /* upper_tail / frac Number of padded zeros at upper edge, code bit units */
pth.undec1 = par[13]; /* Start gate for undecoded */
pth.undec2 = par[14]; /* Stop gate for undecoded */
pth.debug = par[15]; /* If >0: Display debugging messages, If >1: Display more debugging messages */
if (pth.debug > 1)
printf ("%ld %ld\n", nbits, fbits);
maxthreads = par[16]; /* Maximum number of threads in the calcuclations */
pth.dl_short = par[17]; /* Number of short D-layer lags */
pth.dl_long = par[18]; /* Number of long D-layer lags */
pth.nr_dgates = par[19]; /* Number of D-layer gates (including lower tail) */
pth.nr_blk = pth.nr_pp; /* Offset in input vector slices */
if (par[20] > 0)
pth.nr_blk += par[20]; /* Offset in input vector slices */
else
in += par[20]; /* Offset in input data vector */
if (pth.debug > 1)
printf ("%ld %d\n", pth.nr_blk, par[20]);
pth.do_pp = par[21]; /* If non-zero: Calculate power profile */
pth.nr_clutter = par[22]; /* Number of points to de-clutter */
if (par[23] > -1)
pth.notch = par[23]; /* Filter width for clutter reduction (actual width: 2*notch+1). If negative: Use value provided through EROS */
else
pth.notch = (int) upar[0]; /* ew: upar[0] is set to 0 from prface before calling decode6, --> pth.notch = 0 */
if (pth.notch < 0)
float_notch = 1;
/*
* ew: description of output format from file plwin_par-fileinfo
*
* Output format:
* Short description Size (number of elements)
* ------------------------------------------------------------
* Normal short lags [(nr_gates+1)*frac]
* Normal long lags [nr_gates*fft_len/2]
* Normal undecoded lags [nr_undec*frac]
* Normal power profile [do_pp*nr_pp]
* Pulse-to-pulse lags [nr_dgates*dl_short]
* Pulseset-to-pulseset lags [nr_dgates*dl_long]
* Pulse-to-pulse coherent profile [nr_dgates]
*
* The first four are repeated if res_mult>1.
*
* Ordering of lags:
* [lag1 range1], [lag1 range2] , ..., [lag1 rangeMAX], [lag2 range1], [lag2 range2], ...
*/
/* ew: calculate length of output from calculations */
pth.fft_dlayer = 2 * (pth.dl_long + 1) * (pth.dl_short + 1);
pth.fft_clutter = pth.nr_rep / pth.nr_win; /* ew: This is the number of repetitions of the transmitted pulse-group */
pth.nex = pth.fft_len - pth.win_len * pth.frac;
pth.nr_virtsamp = pth.nr_samp + pth.lower_tail + pth.upper_tail;
pth.nr_ugates = pth.nr_virtsamp / pth.frac;
pth.nr_lags = (pth.fft_len + 1) / 2;
/* Dec ffts done as a proper ACF (nfft>=2*sample)*/
/*if(nex>0) pth.fft_len_2=2*pth.fft_len/pth.win_len;
else */
pth.fft_len_2 = 2 * pth.frac;
/* ew: nout is total length of output from calculations? */
pth.nout = pth.fft_len * pth.nr_gates; /* First high res spectra */
pth.nout += pth.fft_len_2 * pth.nr_ugates; /* Then low res undecoded ones */
pth.nout += pth.fft_len_2 * (pth.nr_gates + 1); /* And decoded low res */
if (pth.do_pp > 0)
pth.nout += pth.nr_pp; /* Last a power profile */
if (pth.debug > 1)
printf ("%ld %d %ld %d\n", pth.nout, pth.nex, pth.frac, pth.fft_len_2);
/* ew: Setup multiple threads for the calculations */
pthread_attr_t sched_glob;
void *retval;
pthread_t *thread = NULL;
struct pth *ptth = NULL; /* ew: Pointer to memory location with memory for (number of threds) x (size of struct pth) */
pth.nth = sysconf (_SC_NPROCESSORS_ONLN); /* Number of threads set from system capacity */
if (pth.nth > maxthreads)
pth.nth = maxthreads; /* Number of threads set to a lower value i limited lower by input parameter */
if (pth.nth > pth.nr_win)
pth.nth = pth.nr_win; /* Number of threads set to a lower value i limited lower by input parameter */
if (pth.nth > 1)
{
pthread_attr_init (&sched_glob);
pthread_attr_setscope (&sched_glob, PTHREAD_SCOPE_SYSTEM);
thread = (pthread_t *) malloc (pth.nth * sizeof (pthread_t));
ptth = (struct pth *) malloc (pth.nth * sizeof (struct pth));
}
/* ew: Find length of noud. Unclear what it is for? */
if (pth.nr_undec > pth.nr_ugates)
pth.nr_undec = pth.nr_ugates;
pth.noud = (pth.nr_gates + 1) * pth.frac; /* First the short lags */
pth.noud += pth.nr_gates * pth.nr_lags; /* Then the long lags */
pth.noud += pth.nr_undec * pth.frac; /* Finally some undecoded ones */
if (pth.do_pp > 0)
pth.noud += pth.nr_pp; /* Last a power profile */
if (pth.debug > 1)
printf ("%ld %d\n", pth.noud, pth.nth);
/* ew: allocate memory for out_t */
n_deco = pth.res_mult * pth.nout;
pth.out_t = (float *) calloc (pth.nth * n_deco, sizeof (float));
/* ew: Set pointers in pth to bitcode, input, and output. */
pth.windows = par + npar; /* ew: par i pointer to input parameters, npar i number of params exluding bit code --> windows becomes pointer to start of bit-code? */
pth.in = in; /* ew: In declared as pointer to DSPCMPLXSHORT. Could probably be pointer to input data signal to be precessed. Pointer offsetted according to input params */
pth.out = out; /* Pointer to output after processing */
/* ew: calculate ninf. ninf is used for setting memory allocation of variable inf which is used as temporary memory in different functions */
ninf = 2 * pth.fft_len + pth.fft_len_2;
if (pth.nr_dgates > 0)
{
pth.fir_samp =
calloc (pth.fft_dlayer * pth.nr_dgates, sizeof (DSPCMPLX));
if (pth.fft_dlayer > ninf)
ninf = pth.fft_dlayer;
if (2 * pth.fft_dlayer > pth.nth * ninf)
ninf = 2 * pth.fft_dlayer; /* ew: Use the largest needed size of inf */
}
if (pth.nr_clutter > 0 && 2 * pth.fft_clutter > pth.nth * ninf)
ninf = 2 * pth.fft_clutter; /* ew: Use the largest needed size of inf */
/* ew: Set up specifications for all the ffts that should be executed. Are stored in the pth struct which are pointed to when running the different functions */
pth.inf = fftwf_malloc (pth.nth * ninf * sizeof (fftwf_complex)); /* ew: Allocate memory for inf from ninf*(number of threads). inf declared as fftwf_complex *inf, is used by fftwf lib. */
/* ew: Different segments of memory allocated to inf is used as both input and output of the fft calculations */
/* ew: Could be that output from one fft can be used as input for another? Depends on segments? */
/* ew: Ingemar -> inf is most likely not used for moving results between functions */
/* ew: Usage of inf memory allocation (see the fftwf_execute() function calls)
*
* INPUT POINTER N OUTPUT POINTER
* plwin_clutter - pc inf + th*fft_clutter*2 fft_clutter [input] + fft_clutter | th is increased from 0 up to nth in loop for starting serveral threads
* plwin_clutter - pcb [output pc] fft_clutter [input pc]
*
* plwin_loop - p inf+th*(fft_len*2+fft_len_2) fft_len [input p]+fft_len
* plwin_loop - p_2 [start p] + fft_len*2 fft_len_2 [output p]
*
* ... todo the rest. Also checking if/how the memory is reset between the functions if applicable */
/* Define plans for fft:s that can later be executed */
/* ew: example from manual, fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE) */
/* ew: N = size of transform, in and out are pointers, (can be equal for in-place transformation) */
/* ew: FFTW_ESTIMATE is a flag that means no testing of optimisation is done */
/* ew:Order of execution of fft:s; clutter -> plwin_loop -> pldec_loop --> pldlayer */
/* ew: OBS, inputs and outputs defined here are overidden when the ffts are executed */
/* ew: N in out direction flags */
pth.p = fftwf_plan_dft_1d (pth.fft_len, pth.inf, pth.inf + pth.fft_len, FFTW_FORWARD, FFTW_ESTIMATE); /* ew: executed in plwin_loop */
pth.p_2 = fftwf_plan_dft_1d (pth.fft_len_2, pth.inf + pth.fft_len * 2, pth.inf + pth.fft_len, FFTW_FORWARD, FFTW_ESTIMATE); /* ew: executed in plwin_loop */
pth.pb = fftwf_plan_dft_1d (pth.fft_len, pth.inf, pth.inf + pth.fft_len, FFTW_BACKWARD, FFTW_ESTIMATE); /* ew: executed in pldec_loop */
pth.pb_2 = fftwf_plan_dft_1d (pth.fft_len_2, pth.inf, pth.inf + pth.fft_len, FFTW_BACKWARD, FFTW_ESTIMATE); /* ew: executed in pldec_loop */
if (pth.nr_dgates > 0)
{
pth.pd = fftwf_plan_dft_1d (pth.fft_dlayer, pth.inf, pth.inf + pth.fft_dlayer, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_DESTROY_INPUT); /* executed in pldlayer */
pth.pdb = fftwf_plan_dft_1d (pth.fft_dlayer, pth.inf, pth.inf + pth.fft_dlayer, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_DESTROY_INPUT); /* executed in pldlayer */
}
/* ew: Run function for clutter */
if (pth.nr_clutter > 0)
{
if (float_notch)
nth_clutt = 1; /* ew: Number of threads for cluttering, use one thread if filter width is set negative, = filter widh from EROS */
else
nth_clutt = 1; //pth.nth; /* ew: otherwise use standard n threads */
/*ew N in out direction flags */
pth.pc = fftwf_plan_dft_1d (pth.fft_clutter, pth.inf, pth.inf + pth.fft_clutter, FFTW_FORWARD, FFTW_ESTIMATE | FFTW_DESTROY_INPUT); /* executed in plwin_clutter */
pth.pcb = fftwf_plan_dft_1d (pth.fft_clutter, pth.inf, pth.inf + pth.fft_clutter, FFTW_BACKWARD, FFTW_ESTIMATE | FFTW_DESTROY_INPUT); /* executed in plwin_clutter */
for (k = 0, i = 0; i < nth_clutt; i++, k = k2)
{ /* ew: run plwin_clutter pointed at pth in one or many threads. some of the fftwf_plan_dft_1d defined in pth will likely be used in plwin_clutter */
k2 = pth.nr_clutter * (i + 1) / nth_clutt; /* ew: splits up the number of clutters to be calcualted into segments defined by k1 and k2 */
/* ew: k is put to k2 at transition to next loop iteration. */
/* ew: pth.k1 and pth.k2 are set in a similar way before each calling of the function for fft evaluation */
pth.th = i;
pth.k1 = k;
pth.k2 = k2;
if (nth_clutt > 1)
{
memcpy (ptth + i, &pth, sizeof (struct pth));
pthread_create (thread + i, &sched_glob,
(void *(*)(void *)) plwin_clutter,
(void *) (ptth + i));
}
else
plwin_clutter (&pth);
}
if (nth_clutt > 1) /* ew: Collect results if more than one thread was used for the clutter processing */
for (i = 0; i < nth_clutt; i++)
{
pthread_join (thread[i], &retval);
if (i == 0)
pth.notch = ptth[i].notch;
else
pth.notch += ptth[i].notch;
if (float_notch && pth.debug > 0)
printf ("%d", ptth[i].notch);
}
upar[1] = (float) pth.notch / (float) nth_clutt;
}
/* ew: Run function plwin_loop */
//start[1]=gethrtime(); /* ew: record timestamt to use for processing time evaluation */
start[1] = get_tid (); /* ew: record timestamt to use for processing time evaluation */
for (k = 0, i = 0; i < pth.nth; i++, k = k2)
{ /* ew: run plwin_loop pointed at pth in one or many threads. some of the fftwf_plan_dft_1d defined in pth will likely be used */
k2 = pth.nr_win * (i + 1) / pth.nth;
pth.th = i;
pth.k1 = k;
pth.k2 = k2;
if (pth.nth > 1)
{
memcpy (ptth + i, &pth, sizeof (struct pth));
pthread_create (thread + i, &sched_glob,
(void *(*)(void *)) plwin_loop,
(void *) (ptth + i));
}
else
plwin_loop (&pth);
}
for (i = 0; i < pth.nth; i++)
{ /* ew: Collect results if more than one thread was used for the plwin_loop processing */
if (pth.nth > 1)
{
pthread_join (thread[i], &retval);
}
if (i > 0)
{
out_tf = pth.out_t + i * n_deco;
for (j = 0; j < n_deco; j++)
pth.out_t[j] += out_tf[j];
}
}
/* ew: Run function pldec_loop */
//start[2]=gethrtime(); /* ew: record timestamt to use for processing time evaluation */
start[2] = get_tid (); /* ew: record timestamt to use for processing time evaluation */
for (k = 0; k < pth.res_mult; k++)
{ /* ew: run pldec_loop pointed at pth in one or many threads. some of the fftwf_plan_dft_1d defined in pth will likely be used */
pth.k1 = k;
pth.th = 0;
if (pth.nth > 1 && pth.nth >= pth.res_mult)
{
pth.th = k;
memcpy (ptth + k, &pth, sizeof (struct pth));
pthread_create (thread + k, &sched_glob,
(void *(*)(void *)) pldec_loop,
(void *) (ptth + k));
}
else
pldec_loop (&pth);
}
for (k = 0; k < pth.res_mult; k++) /* ew: Collect results if more than one thread was used for the plwin_loop processing */
if (pth.nth > 1)
pthread_join (thread[k], &retval);
/* ew: Run function pldlayer */
if (pth.nr_dgates > 0)
{
//start[3]=gethrtime(); /* ew: record timestamt to use for processing time evaluation */
start[3] = get_tid (); /* ew: record timestamt to use for processing time evaluation */
pth.out += (pth.noud * pth.res_mult); /* ew: Move pointer to output, based on noud. Still unclear what noud is? */
memset (pth.out + pth.nr_dgates * pth.dl_short, 0,
pth.nr_dgates * (pth.dl_long + 1) * sizeof (DSPCMPLX));
for (k = 0, i = 0; i < pth.nth; i++, k = k2)
{ /* ew: run pldlayer pointed at pth in one or many threads. some of the fftwf_plan_dft_1d defined in pth will likely be used */
k2 = pth.nr_dgates * (i + 1) / pth.nth;
pth.th = i;
pth.k1 = k;
pth.k2 = k2;
if (pth.nth > 1)
{
memcpy (ptth + i, &pth, sizeof (struct pth));
pthread_create (thread + i, &sched_glob,
(void *(*)(void *)) pldlayer,
(void *) (ptth + i));
}
else
pldlayer (&pth);
}
for (i = 0; i < pth.nth; i++) /* ew: Collect results if more than one thread was used for the plwin_loop processing */
if (pth.nth > 1)
pthread_join (thread[i], &retval);
}
/* ew: Free memory and cleanup */
if (pth.debug > 1)
printf ("%ld\n",
pth.noud * pth.res_mult + pth.nr_dgates * (pth.dl_short +
pth.dl_long + 1));
fftwf_destroy_plan (pth.p);
fftwf_destroy_plan (pth.p_2);
fftwf_destroy_plan (pth.pb);
fftwf_destroy_plan (pth.pb_2);
if (pth.nr_dgates > 0)
{
fftwf_destroy_plan (pth.pd);
fftwf_destroy_plan (pth.pdb);
free (pth.fir_samp);
}
if (pth.nr_clutter > 0)
{
fftwf_destroy_plan (pth.pc);
fftwf_destroy_plan (pth.pcb);
}
fftwf_free (pth.inf);
free (pth.out_t);
if (pth.nth > 1)
{
free (thread);
free (ptth);
}
if (pth.debug > 0)
{
//start[4]=gethrtime();
start[4] = get_tid ();
//printf("fd_alt: %d threads: %.2g s",pth.nth,(start[4]-start[0])/CPU_SPEED);
print_tid (start[4] - start[0], pth.nth, "plwin fd_alt");
if (float_notch)
printf (" Notch: %.2g", upar[1]);
if (pth.debug > 1)
for (j = 0; j < 4; j++)
printf (" %.2f", (start[j + 1] - start[j]) / CPU_SPEED);
printf ("\n");
}
return 0;
} /* decoder_6 */
void *
plwin_loop (struct pth *pth)
/* ew: Main function for the lag profile inversion */
{
ulong k, win, j, i, k1, k2, l, th, j2;
int *wind;
DSPCMPLX *of, *of_2, *to;
DSPCMPLXSHORT *in;
DSPCMPLX *add, *ia;
fftwf_complex *inf, *outf, *inf_2;
float *out_t, *out_tf, *out0, *out0_t;
k1 = pth->k1;
k2 = pth->k2;
th = pth->th;
inf = pth->inf + th * (pth->fft_len * 2 + pth->fft_len_2);
outf = inf + pth->fft_len;
inf_2 = inf + pth->fft_len * 2;
memset (inf + pth->win_len * pth->frac, 0,
pth->nex * sizeof (fftwf_complex));
memset (inf_2, 0, pth->fft_len_2 * sizeof (fftwf_complex));
of = (DSPCMPLX *) inf;
to = (DSPCMPLX *) outf;
of_2 = (DSPCMPLX *) inf_2;
out0 = (float *) malloc (pth->fft_len_2 * pth->nr_ugates * sizeof (float));
add = (DSPCMPLX *) malloc (pth->nr_virtsamp * sizeof (DSPCMPLX)); /* ew: allocate memory "add". nr_virtsamp = pth.nr_samp+pth.lower_tail+pth.upper_tail; */
/* ew: nr_samp is samples per data window */
memset (add, 0, pth->lower_tail * sizeof (DSPCMPLX)); /* ew: zeros padded at beginning of memory "add" */
memset (add + pth->nr_samp + pth->lower_tail, 0, pth->upper_tail * sizeof (DSPCMPLX)); /* ew: zeros padded at end of memory "add" */
for (win = k1; win < k2; win++)
{ /* ew: (fixed intendent for this for loop) */
/* ew: k1 and k2 segments into intervals based on number of threads */
/* ew: if only one thread k1 = 0 and k2 = nr_win; nr_win is number of windows per pulse group */
wind = pth->windows + win * pth->win_len; /* ew: pth.windows is pointer to start of bit-code */
/* ew: wind is hence pointer to start of code corresponding to current number on "win" */
memset (out0, 0, pth->fft_len_2 * pth->nr_ugates * sizeof (float)); /* ew: Initiate all of out0 to zero */
out_t = pth->out_t + (th * pth->res_mult + win % pth->res_mult) * pth->nout; /* ew: unclear what this is, TODO. Could be pointer to output memory set per thread? */
for (k = win; k < pth->nr_rep; k += pth->nr_win)
{ /* ew: k goes thought the current data window number in all of the pulse groups */
in = pth->in + k * pth->nr_blk; /* ew: nr_blk is samples per data window. "in" becomes pointer to input data for current data window "k" */
ia = add + pth->lower_tail; /* ew: ia is pointer to memory "add" but pointing to after the initial padded zeros */
for (j = 0; j < pth->nr_samp; j++)
{ /* ew: nr_samp is samples per data window. */
ia[j].re = in[j].re; /* ew: This loop will set the middle of memory add (between initial and ending padding of zero), */
/* to the samples for the current data window from "k" in the for-loop */
ia[j].im = in[j].im;
}
if (pth->do_pp > 0)
{
out_tf =
out_t + pth->fft_len * pth->nr_gates +
pth->fft_len_2 * (pth->nr_gates + 1 + pth->nr_ugates);
for (j = 0; j < pth->nr_samp; j++)
out_tf[j] += (ia[j].re * ia[j].re + ia[j].im * ia[j].im);
for (j = pth->nr_samp; j < pth->nr_pp; j++)
out_tf[j] +=
((float) in[j].re * (float) in[j].re +
(float) in[j].im * (float) in[j].im);
}
out_tf = out_t;
for (i = 0; i < pth->nr_gates; i++)
{
ia = add + i * pth->frac;
if (pth->frac > 1)
for (l = 0; l < pth->win_len;)
if (wind[l] == -1)
for (j = l++ * pth->frac; j < l * pth->frac; j++)
{
of[j].re = -ia[j].re;
of[j].im = -ia[j].im;
}
else
for (j = l++ * pth->frac; j < l * pth->frac; j++)
{
of[j].re = ia[j].re;
of[j].im = ia[j].im;
}
else
for (j = 0; j < pth->win_len; j++)
{
of[j].re = wind[j] * ia[j].re;
of[j].im = wind[j] * ia[j].im;
}
if (pth->nr_dgates > 0 && i < pth->nr_dgates)
{
ia = pth->fir_samp + i * pth->fft_dlayer + k;
for (j = 0; j < pth->fft_len - pth->nex; j++)
{
ia->re += of[j].re;
ia->im += of[j].im;
}
}
fftwf_execute_dft (pth->p, inf, outf);
for (j = 0; j < pth->fft_len; j++)
out_tf[j] += (to[j].re * to[j].re + to[j].im * to[j].im);
out_tf += pth->fft_len;
}
l = pth->lower_tail / pth->frac;
out0_t = out0 + l * pth->fft_len_2;
for (i = l; i < pth->nr_ugates - pth->upper_tail / pth->frac; i++)
{
ia = add + i * pth->frac;
for (j = 0; j < pth->frac; j++)
{
of_2[j].re = ia[j].re;
of_2[j].im = ia[j].im;
}
fftwf_execute_dft (pth->p_2, inf_2, outf);
for (j = 0; j < pth->fft_len_2; j++)
out0_t[j] += (to[j].re * to[j].re + to[j].im * to[j].im);
out0_t += pth->fft_len_2;
}
}
for (j = 0; j < pth->fft_len_2 * pth->nr_ugates; j++)
out_tf[j] += out0[j];
out0_t = out0;
out_tf += (pth->fft_len_2 * pth->nr_ugates);
j2 = (pth->nr_gates + 1) * pth->fft_len_2;
for (i = 0; i < pth->win_len - 1; i++)
{
if (wind[i] * wind[i + 1] == -1)
for (j = 0; j < j2; j++)
out_tf[j] -= out0_t[j];
else
for (j = 0; j < j2; j++)
out_tf[j] += out0_t[j];
out0_t += pth->fft_len_2;
}
}
free (out0);
free (add);
return NULL;
}
void *
pldec_loop (struct pth *pth)
{
ulong k, j, i, l, ustep;
fftwf_complex *inf, *outf;
DSPCMPLX *of, *to, *too, *add;
float *out_tf, *out_tt;
int skip0 = 1;
k = pth->k1;
inf = pth->inf + pth->th * pth->fft_len * 2;
outf = inf + pth->fft_len;
of = (DSPCMPLX *) inf;
to = (DSPCMPLX *) outf;
memset (of, 0, pth->fft_len * sizeof (DSPCMPLX));
if (pth->nr_undec > 0)
ustep = (pth->undec2 - pth->undec1 + 1) / pth->nr_undec;
out_tt = pth->out_t + pth->nr_gates * pth->fft_len + k * pth->nout;
add =
pth->out + (pth->nr_gates + 1) * pth->frac +
pth->nr_gates * pth->nr_lags + k * pth->noud;
for (i = 0; i < pth->nr_undec; i++)
{
for (l = 0; l < ustep; l++)
{
out_tf = out_tt + (i * ustep + pth->undec1 + l) * pth->fft_len_2;
for (j = 0; j < pth->fft_len_2; j++)
of[j].re += out_tf[j] / pth->fft_len_2 / ustep;
}
fftwf_execute_dft (pth->pb_2, inf, outf);
for (j = 0; j < pth->frac; j++)
{
add[j * pth->nr_undec].re = to[j].re;
add[j * pth->nr_undec].im = to[j].im;
}
add++;
memset (of, 0, pth->fft_len_2 * sizeof (DSPCMPLX));
}
out_tt = pth->out_t + k * pth->nout;
add = pth->out + k * pth->noud + (pth->nr_gates + 1) * pth->frac;
too = to + skip0;
for (i = 0; i < pth->nr_gates; i++)
{
out_tf = out_tt + i * pth->fft_len;
for (j = 0; j < pth->fft_len; j++)
of[j].re = out_tf[j] / pth->fft_len;
fftwf_execute_dft (pth->pb, inf, outf);
for (j = 0; j < pth->nr_lags; j++)
{
add[j * pth->nr_gates].re = too[j].re;
add[j * pth->nr_gates].im = too[j].im;
}
out_tf = out_tt + i * pth->fft_len_2 + pth->nr_gates * pth->fft_len;
for (l = 1; l < pth->win_len; l++)
for (j = 0; j < pth->fft_len_2; j++)
out_tf[j] += out_tf[j + l * pth->fft_len_2];
for (j = 0; j < pth->fft_len_2; j++)
of[j].re = out_tf[j] / pth->fft_len_2;
fftwf_execute_dft (pth->pb_2, inf, outf);
for (j = 0; j < pth->frac - skip0; j++)
{
add[j * pth->nr_gates].re -= too[j].re;
add[j * pth->nr_gates].im -= too[j].im;
}
add++;
}
add = pth->out + k * pth->noud;
out_tf =
out_tt + pth->nr_gates * pth->fft_len + pth->nr_ugates * pth->fft_len_2;
for (i = 0; i < pth->nr_gates + 1; i++)
{
for (j = 0; j < pth->fft_len_2; j++)
of[j].re = out_tf[j] / pth->fft_len_2;
fftwf_execute_dft (pth->pb_2, inf, outf);
for (j = 0; j < pth->frac; j++)
{
add[j * (pth->nr_gates + 1)].re = to[j].re;
add[j * (pth->nr_gates + 1)].im = to[j].im;
}
add++;
out_tf += pth->fft_len_2;
}
add =
pth->out + (pth->nr_gates + 1) * pth->frac +
pth->nr_gates * pth->nr_lags + pth->nr_undec * pth->frac + k * pth->noud;
if (pth->do_pp > 0)
for (j = 0; j < pth->nr_pp; j++)
{
add[j].re = out_tf[j];
add[j].im = 0;
}
return NULL;
}
void *
pldlayer (struct pth *pth)
{
ulong k, j, i;
fftwf_complex *outf;
DSPCMPLX *to, *too, *add, *out_t, *out_s, *samp;
outf = pth->inf + pth->th * (pth->fft_dlayer);
to = (DSPCMPLX *) outf;
out_t = pth->out + pth->nr_dgates * pth->dl_short;
out_s = out_t + pth->nr_dgates * pth->dl_long;
for (i = pth->k1; i < pth->k2; i++)
{
add = pth->fir_samp + i * pth->fft_dlayer;
samp = out_s + i;
for (j = 0; j < pth->nr_rep; j++)
{
samp->re += add[j].re;
samp->im += add[j].im;
}
fftwf_execute_dft (pth->pd, (fftwf_complex *) add, outf);
for (j = 0; j < pth->fft_dlayer; j++)
{
add[j].re =
(to[j].re * to[j].re + to[j].im * to[j].im) / pth->fft_dlayer;
add[j].im = 0;
}
fftwf_execute_dft (pth->pdb, (fftwf_complex *) add, outf);
add = pth->out + i;
for (j = 0; j < pth->dl_short; j++)
{
add[j * pth->nr_dgates].re = to[j + 1].re;
add[j * pth->nr_dgates].im = to[j + 1].im;
}
add = out_t + i;
for (k = 0; k < pth->dl_long; k++)
{
too = to + (k + 1) * (pth->dl_short + 1);
for (j = 0; j < (pth->dl_short + 1); j++)
{
add->re += too[j].re;
add->im += too[j].im;
}
add += pth->nr_dgates;
}
}
return NULL;
}
void *
plwin_clutter (struct pth *pth)
/* ew: Function for filtering out ground reflections.
* This is done by looking for zero doppler shift, then applying a notch filter */
{
ulong k, j, i, win;
int notch;
DSPCMPLXSHORT *in;
DSPCMPLX *clx, *cly;
float clf, clm, *clt;
clx = (DSPCMPLX *) pth->inf + pth->th * pth->fft_clutter * 2; /* ew: th is increased from 0 up to nth in loop for starting serveral threads */
/* ew: leads to different settings on clx. clx is a pointer, so the pointer that changes */
/* ew: clx takes the adress from poitner pth.inf, and increases it with +pth.th*pth.ff_clutter */
cly = clx + pth->fft_clutter;
i = pth->nr_rep / pth->nr_win; /* ew: This is the number of pulse groups */
notch = pth->notch;
if (notch < 0)
{ /* ew: This might never happen based on setting of notch at start of decode6?! if par->notch is -1 pth - notch is set to upar[0], which is set to hard 0 from prface */
/* If decode6 is run through e.g. pyface this can be entered. prface is simplified interface, upars can be changed during operation */
clt = (float *) calloc (pth->fft_clutter, sizeof (float)); /* ew: Allocate memory for clt; cumsum of absolute value ^2 of spectrum from fft */
/* ew: inf (and clx defined via inf) is still just an allocated memory but without contents, needs to be filled before fft can be performed */
for (j = pth->k1; j < pth->k2; j++) /* ew: j goes from k1 to k2, number of points to declutter (nr_clutter), segmented into intervals based on number of threads */
/* ew: example, one tread --> j goes from 0 to nr_clutter */
for (win = 0; win < pth->nr_win; win++)
{ /* ew: win goes from 0 to nr_win. One window is one coded pulse. The loop is over windows in one pulse group */
for (k = win; k < pth->nr_rep; k += pth->nr_win)
{ /* ew: k goes from current window number into the same window in each pulse group */
in = pth->in + k * pth->nr_blk + j; /* ew: nr_blk = Number of samples in the power profile = samples per subcycle (aka data window, pulse) + extra samples */
/* ew: means that "in" will go through the first nr_clutter number of points in all of the data windows in all the pulse groups */
clx[k / pth->nr_win].re = in->re; /* ew: [(index of data window)/(windows per pulese group)] --> [number of pulse-group] */
/* ew: The corresponding sample from each pulse group will be placed as a series into clx */
/* ew: This will be the input for the fft. The fft will be repeated for each of the first nr_clutter samples for all windows */
clx[k / pth->nr_win].im = in->im; /* ew: Imaginary part set the same way as real part above */
}
memset (clx + i, 0, (pth->fft_clutter - i) * sizeof (DSPCMPLX)); /* ew: Set zeros in clx after the entered values (?) */
/* ew: Execute fft */
fftwf_execute_dft (pth->pc, (fftwf_complex *) clx, (fftwf_complex *) cly); /* ew: input pointer clx, output pointer cly */
for (k = 0; k < pth->fft_clutter; k++)
clt[k] += (cly[k].re * cly[k].re + cly[k].im * cly[k].im); /* clt = cumulative sum of (re**2 + im**2), of output spectrum from fft. Increases over the for loops */
}
/* ew: All fft:s has been performed and the cumsum clt has been added for each fft evaluation */
/* ew: Next step is finding the parameters for the notch (?) */
notch = 0;
clf = 2. * clt[0];
clm = 0;
j = pth->fft_clutter - 1;
for (k = 1; k < pth->fft_clutter; k++)
clm += clt[k]; /* ew: clm is cumulative sum of clt[1:] */
while (notch < -pth->notch + 1 && clf / 2. > clm / j)
{
notch++;
clf = clt[notch] + clt[pth->fft_clutter - notch];
clm -= clf;
j -= 2;
clf = 2. * cl_min (clt[notch], clt[pth->fft_clutter - notch]);
}
notch--;
free (clt);
pth->notch = notch;
}
/* ew: Previous if statment might never happen depending on upar[0]? */
/* ew: ->jumps directly here. If previous if-statment is executed, notch will change value and this statement can maybe still be executed if notch >=0 */
/* ew: Hypotheis, this if-statement applys the notch filter. Last if-statement finds value for width of notch filter if program is told to do so, but seems width 0 is set when running from prface */
/* ew: Ingemar -> hypotheis above correct */
if (notch >= 0)
{
clf = 1. / sqrt (1. - (float) (2 * notch + 1) / (float) i) / (float) pth->fft_clutter; /* ew: Ingemar -> applying notch removes energy from spectrum. This factor conserves energy in signal. Applyed in time domain */
for (j = pth->k1; j < pth->k2; j++) /* ew: j goes from k1 to k2, number of points to declutter (nr_clutter), segmented into intervals based on number of threads */
/* ew: example, one tread --> j goes from 0 to nr_clutter */
for (win = 0; win < pth->nr_win; win++)
{ /* ew: win goes from 0 to nr_win. One window is one coded pulse. The loop is over windows in one pulse group */
for (k = win; k < pth->nr_rep; k += pth->nr_win)
{ /* ew: k goes from current window number into the same window in each pulse group */
in = pth->in + k * pth->nr_blk + j; /* ew: nr_blk = Number of samples in the power profile = samples per subcycle (aka data window, pulse) + extra samples */
/* ew: means that "in" will go through the first nr_clutter number of points in all of the data windows in all the pulse groups */
clx[k / pth->nr_win].re = in->re; /* ew: [(index of data window)/(windows per pulese group)] --> [number of pulse-group] */
/* ew: The corresponding sample from each pulse group will be placed as a series into clx */
/* ew: By taking the same sample in each group the coding is the same and can be disregarded from /Ingemar */
/* ew: This will be the input for the fft. The fft will be repeated for each of the first nr_clutter samples for all windows */
clx[k / pth->nr_win].im = in->im; /* ew: Imaginary part set the same way as real part above */
}
memset (clx + i, 0, (pth->fft_clutter - i) * sizeof (DSPCMPLX));
/* ew: Execute fft */
fftwf_execute_dft (pth->pc, (fftwf_complex *) clx,
(fftwf_complex *) cly);
/* ew: Apply the notch filter onto the calculated spectrum */
memset (cly, 0, (notch + 1) * sizeof (DSPCMPLX)); /* ew: The first values of the spectrum are set to 0. Number of zeros depends on notch fitler width */
/* ew: Set zeros in cly after the length of the fft-spectrum minus length of notch (?) */
memset (cly + pth->fft_clutter - notch, 0,
notch * sizeof (DSPCMPLX));
/* ew: Do backwards fft from spectrum to time series on the notch filtered spectrum */
fftwf_execute_dft (pth->pcb, (fftwf_complex *) cly,
(fftwf_complex *) clx);
/* ew: Adjust the input data based on time series after notch filter. Input data is adjusted in svereal steps during the execution of the for-loops */
for (k = win; k < pth->nr_rep; k += pth->nr_win)
{
in = pth->in + k * pth->nr_blk + j;
in->re = rint (clx[k / pth->nr_win].re * clf);
in->im = rint (clx[k / pth->nr_win].im * clf);
}
}
}
return NULL;
}
void
matface (int *par, int *nin, double *in_r, double *in_i,
int *nout, double *out_r, double *out_i, double *upar)
{
ulong nb = par[0] + par[4] * par[7];
float *fpar = NULL;
int i;
DSPCMPLXSHORT *in;
DSPCMPLX *out;
in = (DSPCMPLXSHORT *) malloc (*nin * sizeof (DSPCMPLXSHORT));
for (i = 0; i < *nin; i++)
{
in[i].re = in_r[i];
in[i].im = in_i[i];
}
out = (DSPCMPLX *) malloc (*nout * sizeof (DSPCMPLX));
decoder_6 (nb, par, 0, fpar, in, out, upar);
for (i = 0; i < *nout; i++)
{
out_r[i] = out[i].re;
out_i[i] = out[i].im;
}
for (i = 0; i < *nin; i++)
{
in_r[i] = in[i].re;
in_i[i] = in[i].im;
}
free (in);
free (out);
}
typedef struct
{
double re;
double im;
} DSPCMPLXDBL;
void
pyface (int *par, int nin, DSPCMPLXDBL * in_r, DSPCMPLX * out, double *upar)
{
ulong nb = par[0] + par[4] * par[7];
float *fpar = NULL;
int i;
DSPCMPLXSHORT *in;
in = (DSPCMPLXSHORT *) malloc (nin * sizeof (DSPCMPLXSHORT));
for (i = 0; i < nin; i++)
{
in[i].re = in_r[i].re;
in[i].im = in_r[i].im;
}
decoder_6 (nb, par, 0, fpar, in, out, upar);
for (i = 0; i < nin; i++)
{
in_r[i].re = in[i].re;
in_r[i].im = in[i].im;
}
free (in);
}