Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error of training (New code) #20

Open
yuan738 opened this issue Dec 17, 2022 · 4 comments
Open

Error of training (New code) #20

yuan738 opened this issue Dec 17, 2022 · 4 comments

Comments

@yuan738
Copy link

yuan738 commented Dec 17, 2022

Traceback (most recent call last): File "train.py", line 22, in <module> from model.utils.metaclm import SupConLoss ModuleNotFoundError: No module named 'model.utils.metaclm'

I didn't find metaclm.py in the folder lib/model/utils/.
Maybe something went wrong while preparing my environment?

Looking forward to your answer, thank you!

@infinity7428
Copy link
Owner

I uploaded the code again. Let me know if you have any problems.

@yuan738
Copy link
Author

yuan738 commented Dec 19, 2022

Hi,
I adjusted the hyperparameters of each loss, and the loss is still nan. Is there any other hyperparameter that can be adjusted?

parser = argparse.ArgumentParser(description='Train a Fast R-CNN network')
# net and dataset
parser.add_argument('--dataset', dest='dataset', help='training dataset', default='coco_base', type=str)
parser.add_argument('--net', dest='net', help='vgg16, res101', default='hanmcl', type=str)
parser.add_argument('--flip', dest='use_flip', help='use flipped data or not', default=False, action='store_true')
# optimizer
parser.add_argument('--o', dest='optimizer', help='training optimizer', default="adam", type=str)
parser.add_argument('--lr', dest='lr', help='starting learning rate', default=0.001, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step', help='step to do learning rate decay, unit is epoch', default=1000, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma', help='learning rate decay ratio', default=0.1, type=float)
# train&finetuning setting
parser.add_argument('--nw', dest='num_workers', help='number of worker to load data', default=10, type=int)
parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true')                      
parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true')
parser.add_argument('--bs', dest='batch_size', help='batch_size', default=4, type=int)
parser.add_argument('--start_epoch', dest='start_epoch', help='starting epoch', default=1, type=int)
parser.add_argument('--epochs', dest='max_epochs', help='number of epochs to train', default=12, type=int)
parser.add_argument('--disp_interval', dest='disp_interval', help='number of iterations to display', default=1, type=int)
parser.add_argument('--save_dir', dest='save_dir', help='directory to save models', default="models", type=str)
parser.add_argument('--ascale', dest='ascale', help='number of anchor scale', default=4, type=int)
# parser.add_argument('--ft', dest='finetune', help='finetune mode', default=False, action='store_true')
parser.add_argument('--eval', dest='eval', help='evaluation mode', default=False, action='store_true')
parser.add_argument('--onc', dest='old_n_classes', help='number of classes of the source domain', default=81, type=int)
# inference setting
parser.add_argument('--eval_dir', dest='eval_dir', help='output directory of evaluation', default=None, type=str)
# few shot
parser.add_argument('--fs', dest='fewshot', help='few-shot setting', default=True, action='store_true')
parser.add_argument('--way', dest='way', help='num of support way', default=2, type=int)
parser.add_argument('--shot', dest='shot', help='num of support shot', default=3, type=int)
parser.add_argument('--sup_dir', dest='sup_dir', help='directory of support images', default='coco/seed1/30shot_image_novel', type=str)
# load checkpoints
parser.add_argument('--r', dest='resume', help='resume checkpoint or not', action='store_true', default=False)
parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models", type=str)
parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load model', default=1, type=int)
parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load model', default=0, type=str)
# logger
parser.add_argument('--dlog', dest='dlog', help='disable the logger', default=False, action='store_true')
parser.add_argument('--imlog', dest='imlog', help='save im in the logger', default=False, action='store_true')
# seed_ft
parser.add_argument('--sup', dest='ft_sup', help='directory of support images', default='seed1/1shot_image_novel', type=str)
parser.add_argument('--seed', dest='seed', help='num of support seed', default='seed1', type=str)
parser.add_argument('--shots', dest='shots', help='num of support shots', default='1shots', type=str)

@infinity7428
Copy link
Owner

Are you using your own dataset?
It might help to adjust learning rate (--lr).

@yuan738
Copy link
Author

yuan738 commented Dec 19, 2022

I used coco.
I also thought about adjusting the learning rate to 0.0001 and now the code is running.
Thank you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants