-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathPlainFFT.cpp
181 lines (164 loc) · 5.04 KB
/
PlainFFT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
FFT libray
Copyright (C) 2010 Didier Longueville
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "PlainFFT.h"
#define twoPi 6.28318531
#define fourPi 12.56637061
PlainFFT::PlainFFT(void)
{
/* Constructor */
}
PlainFFT::~PlainFFT(void)
{
/* Destructor */
}
uint8_t PlainFFT::Revision(void)
{
return(FFT_LIB_REV);
}
void PlainFFT::Compute(double *vReal, double *vImag, uint16_t samples, uint8_t dir)
{
/* Computes in-place complex-to-complex FFT */
/* Reverse bits */
uint16_t j = 0;
for (uint16_t i = 0; i < (samples - 1); i++) {
if (i < j) {
Swap(&vReal[i], &vReal[j]);
Swap(&vImag[i], &vImag[j]);
}
uint16_t k = (samples >> 1);
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
double c1 = -1.0;
double c2 = 0.0;
uint8_t l2 = 1;
for (uint8_t l = 0; (l < Exponent(samples)); l++) {
uint8_t l1 = l2;
l2 <<= 1;
double u1 = 1.0;
double u2 = 0.0;
for (j = 0; j < l1; j++) {
for (uint16_t i = j; i < samples; i += l2) {
uint16_t i1 = i + l1;
double t1 = u1 * vReal[i1] - u2 * vImag[i1];
double t2 = u1 * vImag[i1] + u2 * vReal[i1];
vReal[i1] = vReal[i] - t1;
vImag[i1] = vImag[i] - t2;
vReal[i] += t1;
vImag[i] += t2;
}
double z = ((u1 * c1) - (u2 * c2));
u2 = ((u1 * c2) + (u2 * c1));
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == FFT_FORWARD) {
c2 = -c2;
}
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for reverse transform */
if (dir != FFT_FORWARD) {
for (uint16_t i = 0; i < samples; i++) {
vReal[i] /= samples;
vImag[i] /= samples;
}
}
}
void PlainFFT::ComplexToMagnitude(double *vReal, double *vImag, uint16_t samples)
{
/* vM is half the size of vReal and vImag */
for (uint8_t i = 0; i < samples; i++) {
vReal[i] = sqrt(sq(vReal[i]) + sq(vImag[i]));
}
}
void PlainFFT::Windowing(double *vData, uint16_t samples, uint8_t windowType, uint8_t dir)
{
/* Weighing factors are computed once before multiple use of FFT */
/* The weighing function is symetric; half the weighs are recorded */
double samplesMinusOne = (double(samples) - 1.0);
for (uint16_t i = 0; i < (samples >> 1); i++) {
double indexMinusOne = double(i);
double ratio = (indexMinusOne / samplesMinusOne);
double weighingFactor = 1.0;
/* Compute and record weighting factor */
switch (windowType) {
case FFT_WIN_TYP_RECTANGLE: /* rectangle (box car) */
weighingFactor = 1.0;
break;
case FFT_WIN_TYP_HAMMING: /* hamming */
weighingFactor = 0.54 - (0.46 * cos(twoPi * ratio));
break;
case FFT_WIN_TYP_HANN: /* hann */
weighingFactor = 0.54 * (1.0 - cos(twoPi * ratio));
break;
case FFT_WIN_TYP_TRIANGLE: /* triangle (Bartlett) */
weighingFactor = 1.0 - ((2.0 * abs(indexMinusOne - (samplesMinusOne / 2.0))) / samplesMinusOne);
break;
case FFT_WIN_TYP_BLACKMAN: /* blackmann */
weighingFactor = 0.42323 - (0.49755 * (cos(twoPi * ratio))) + (0.07922 * (cos(fourPi * ratio)));
break;
case FFT_WIN_TYP_FLT_TOP: /* flat top */
weighingFactor = 0.2810639 - (0.5208972 * cos(twoPi * ratio)) + (0.1980399 * cos(fourPi * ratio));
break;
case FFT_WIN_TYP_WELCH: /* welch */
weighingFactor = 1.0 - sq((indexMinusOne - samplesMinusOne / 2.0) / (samplesMinusOne / 2.0));
break;
}
if (dir == FFT_FORWARD) {
vData[i] *= weighingFactor;
vData[samples - (i + 1)] *= weighingFactor;
}
else {
vData[i] /= weighingFactor;
vData[samples - (i + 1)] /= weighingFactor;
}
}
}
double PlainFFT::MajorPeak(double *vD, uint16_t samples, double samplingFrequency)
{
double maxY = 0;
uint16_t IndexOfMaxY = 0;
for (uint16_t i = 1; i < ((samples >> 1) - 1); i++) {
if ((vD[i-1] < vD[i]) && (vD[i] > vD[i+1])) {
if (vD[i] > maxY) {
maxY = vD[i];
IndexOfMaxY = i;
}
}
}
double delta = 0.5 * ((vD[IndexOfMaxY-1] - vD[IndexOfMaxY+1]) / (vD[IndexOfMaxY-1] - (2.0 * vD[IndexOfMaxY]) + vD[IndexOfMaxY+1]));
double interpolatedX = ((IndexOfMaxY + delta) * samplingFrequency) / (samples-1);
/* retuned value: interpolated frequency peak apex */
return(interpolatedX);
}
/* Private functions */
void PlainFFT::Swap(double *x, double *y)
{
double temp = *x;
*x = *y;
*y = temp;
}
uint8_t PlainFFT::Exponent(uint16_t value)
{
/* Computes the Exponent of a powered 2 value */
uint8_t result = 0;
while (((value >> result) & 1) != 1) result++;
return(result);
}