-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
114 lines (85 loc) · 2.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from six import text_type as unicode
from six import string_types
from sklearn.preprocessing import normalize
import numpy as np
import datetime
from heapq import nlargest
# [ES] Entrada: String. Salida: String convertido al formato unicode
def word_to_unicode(w):
if isinstance(w, string_types) and not isinstance(w, unicode):
return unicode(w, encoding="utf-8")
else:
return w
# [ES]: ws: Lista de palabras. unicode: Transforma las palabras al formato unicode. lower: Transforma las palabras a minúsculas
def standardize_words(ws, to_unicode=False, lower=False):
for i in range(len(ws)):
if to_unicode:
ws[i] = word_to_unicode(ws[i])
if lower:
ws[i] = ws[i].lower()
return ws
def isInt_float(s):
try:
return float(str(s)).is_integer()
except:
return False
def has_header(path):
with open(path) as f:
first_line = f.readline()
first_line = first_line.split(' ')
if len(first_line) == 2:
return 1
return 0
def get_dimensions(path):
with open(path) as f:
first_line = f.readline()
first_line = first_line.split(' ')
if len(first_line) == 2:
return int(first_line[1])
else:
return None
def get_num_words(path):
with open(path) as f:
first_line = f.readline()
first_line = first_line.split(' ')
if len(first_line) == 2:
return int(first_line[0])
else:
return None
def vocab_from_path(path):
# Dado un embedding (path) devuelve su vocabulario. Set
words = []
with open(path) as f:
dims = get_dimensions(path)
if dims:
next(f)
for line in f:
l = line.split()
wi = len(l) - dims
st = ''.join(l[0:wi])
words.append(st)
else:
for line in f:
words.append(line.split()[0])
return set(words)
def normalize_vector(vector, norm='l2'):
vector = np.asarray(vector).reshape(-1, len(vector))
return normalize(vector, norm=norm)[0]
def printTrace(message):
print("<" + str(datetime.datetime.now()) + "> " + str(message))
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
def get_largest_index(list_cos,k):
n = nlargest(k, enumerate(list_cos), key=lambda x: x[1])
return [x[0] for x in n]
def generate_dictionary_for_vecmap(path1, path2):
vocab1 = vocab_from_path(path1)
vocab2 = vocab_from_path(path2)
return set.intersection(vocab1, vocab2)
def print_dictionary_for_vecmap(filename, dict):
with open(filename, 'w') as file:
for w in dict:
if w != '' and w != '\n':
print(w + ' ' + w, file=file)