-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththesis.bbl
14480 lines (14477 loc) · 790 KB
/
thesis.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.1 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated by
% biber as required.
%
\begingroup
\makeatletter
\@ifundefined{[email protected]}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\refsection{0}
\datalist[entry]{nyt/global//global/global}
\entry{abercrombieNearsurfaceAttenuationSite1997}{article}{}
\name{author}{1}{}{%
{{hash=ca1c68d1292298d30df88153325c2c64}{%
family={Abercrombie},
familyi={A\bibinitperiod},
given={Rachel\bibnamedelima E.},
giveni={R\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
}
\strng{namehash}{ca1c68d1292298d30df88153325c2c64}
\strng{fullhash}{ca1c68d1292298d30df88153325c2c64}
\strng{bibnamehash}{ca1c68d1292298d30df88153325c2c64}
\strng{authorbibnamehash}{ca1c68d1292298d30df88153325c2c64}
\strng{authornamehash}{ca1c68d1292298d30df88153325c2c64}
\strng{authorfullhash}{ca1c68d1292298d30df88153325c2c64}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Near-surface attenuation and site effects are investigated using the seismograms of 17 local earthquakes recorded at depths of 0, 0.3, 1.5, 2.5, and 2.9 km in the Cajon Pass borehole, southern California. The borehole penetrates 500 m of Miocene sandstone and then crystalline, granitic basement rock. Previous estimates of site response have been limited to shallower holes, where the surface reflection interferes with the upgoing direct wave, and the deepest sensor is not below the severe near-surface effects, in bedrock. Spectral ratios of the direct P and S waves for each earthquake between the different recording levels are well modeled with frequency-independent Q and amplification. At the borehole, QP ∼ 27 ± 8, and QS ∼ 21 ± 7 in the upper 2.9 km, increasing from QP ∼26 and QS ∼15 in the upper 300 m to QP ∼133 and QS ∼47 between 1.5 and 3 km. One event was also recorded at a surface granite site, less than 1.5 km from the wellhead. Comparison of the 2.9-km recording with that at this granite site gives QP ∼50 and QS ∼23. The similarity of these values with those of previous studies at a wide range of sites suggests that Q is very low in the near surface, independent of rock type. Near-surface amplification appears considerably more site dependent. At the wellhead, the amplifications at 1 Hz of the direct P and S waves are 12 ± 7 and 13 ± 7, respectively. These values include the free-surface effect and are in reasonable agreement with the impedance contrast from the borehole logs. At the granite site, amplification of both P and S waves is less than four; direct-wave amplification at the wellhead is therefore at least three times that of the granite site. The spectra of the direct and coda waves of the one earthquake recorded at both the wellhead and granite sites are compared with the corresponding 2.9-km recording. Coda-wave amplification is in good agreement with the direct wave at the rock site, but at the borehole, the coda-wave amplification factor overestimates the direct-wave amplification by a factor of 3.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{month}{6}
\field{number}{3}
\field{shortjournal}{Bulletin of the Seismological Society of America}
\field{title}{Near-Surface Attenuation and Site Effects from Comparison of Surface and Deep Borehole Recordings}
\field{volume}{87}
\field{year}{1997}
\field{dateera}{ce}
\field{pages}{731\bibrangedash 744}
\range{pages}{14}
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/A7TLAZGV/Abercrombie_1997_Near-surface attenuation and site effects from com.pdf
\endverb
\keyw{⛔ No DOI found}
\endentry
\entry{abrahamsonSummaryAbrahamsonSilva2008}{article}{}
\name{author}{2}{}{%
{{hash=6d2f5650457465b453719c7181a040cf}{%
family={Abrahamson},
familyi={A\bibinitperiod},
given={Norman},
giveni={N\bibinitperiod}}}%
{{hash=302cd63f23c53b08ae80157e9efb7898}{%
family={Silva},
familyi={S\bibinitperiod},
given={Walter},
giveni={W\bibinitperiod}}}%
}
\strng{namehash}{f0ff16ba796d385dd51fbcfd6128b334}
\strng{fullhash}{f0ff16ba796d385dd51fbcfd6128b334}
\strng{bibnamehash}{f0ff16ba796d385dd51fbcfd6128b334}
\strng{authorbibnamehash}{f0ff16ba796d385dd51fbcfd6128b334}
\strng{authornamehash}{f0ff16ba796d385dd51fbcfd6128b334}
\strng{authorfullhash}{f0ff16ba796d385dd51fbcfd6128b334}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Empirical ground-motion models for the rotation-independent average horizontal component from shallow crustal earthquakes are derived using the PEER NGA database. The model is applicable to magnitudes 5–8.5, distances 0–200 km, and spectral periods of 0–10 sec. In place of generic site categories (soil and rock), the site is parameterized by average shear-wave velocity in the top 30 m ( VS30 ) and the depth to engineering rock (depth to VS =1000 m/s). In addition to magnitude and style-of-faulting, the source term is also dependent on the depth to top-of-rupture: for the same magnitude and rupture distance, buried ruptures lead to larger short-period ground motions than surface ruptures. The hanging-wall effect is included with an improved model that varies smoothly as a function of the source properties (M, dip, depth), and the site location. The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations. The short-period standard deviation model for soil sites is also distant-dependent due to nonlinear site response, with smaller standard deviations at short distances.}
\field{issn}{8755-2930, 1944-8201}
\field{journaltitle}{Earthquake Spectra}
\field{langid}{english}
\field{month}{2}
\field{number}{1}
\field{shortjournal}{Earthquake Spectra}
\field{title}{Summary of the {{Abrahamson}} \& {{Silva NGA Ground}}-{{Motion Relations}}}
\field{urlday}{18}
\field{urlmonth}{2}
\field{urlyear}{2020}
\field{volume}{24}
\field{year}{2008}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{67\bibrangedash 97}
\range{pages}{31}
\verb{doi}
\verb 10/ft44sj
\endverb
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/N2B4TP4L/Abrahamson and Silva_2008_Summary of the Abrahamson & Silva NGA Ground-Motio.pdf
\endverb
\verb{urlraw}
\verb http://journals.sagepub.com/doi/10.1193/1.2924360
\endverb
\verb{url}
\verb http://journals.sagepub.com/doi/10.1193/1.2924360
\endverb
\endentry
\entry{abrahamsonSummaryASK14Ground2014}{article}{}
\name{author}{3}{}{%
{{hash=23405ec339bde7bd238465e5100505fa}{%
family={Abrahamson},
familyi={A\bibinitperiod},
given={Norman\bibnamedelima A.},
giveni={N\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
{{hash=f282589e9bfb84efc58810b81054d164}{%
family={Silva},
familyi={S\bibinitperiod},
given={Walter\bibnamedelima J.},
giveni={W\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
{{hash=bd07a8d355fb510d8bcd9b4cdf8cd9ad}{%
family={Kamai},
familyi={K\bibinitperiod},
given={Ronnie},
giveni={R\bibinitperiod}}}%
}
\strng{namehash}{e21a2d1888914b08954769bf23119512}
\strng{fullhash}{a787d89b7406d592fef4a17d0f37b9ee}
\strng{bibnamehash}{a787d89b7406d592fef4a17d0f37b9ee}
\strng{authorbibnamehash}{a787d89b7406d592fef4a17d0f37b9ee}
\strng{authornamehash}{e21a2d1888914b08954769bf23119512}
\strng{authorfullhash}{a787d89b7406d592fef4a17d0f37b9ee}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Empirical ground motion models for the average horizontal component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.5, distances 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as those used by Abrahamson and Silva (2008) , with the following exceptions: the loading level for nonlinear effects is based on the spectral acceleration at the period of interest rather than the PGA; and the distance scaling for hanging wall (HW) effects off the ends of the rupture includes a dependence on the source-to-site azimuth. Regional differences in large-distance attenuation and V S30 scaling between California, Japan, China, and Taiwan are included. The scaling for the HW effect is improved using constraints from numerical simulations. The standard deviation is magnitude-dependent, with smaller magnitudes leading to larger standard deviations at short periods, but smaller standard deviations at long periods. Directivity effects are not included through explicit parameters, but are captured through the variability of the empirical data.}
\field{issn}{8755-2930, 1944-8201}
\field{journaltitle}{Earthquake Spectra}
\field{langid}{english}
\field{month}{8}
\field{number}{3}
\field{shortjournal}{Earthquake Spectra}
\field{title}{Summary of the {{ASK14 Ground Motion Relation}} for {{Active Crustal Regions}}}
\field{urlday}{22}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{30}
\field{year}{2014}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{1025\bibrangedash 1055}
\range{pages}{31}
\verb{doi}
\verb 10/f6jggd
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Earthquake Spectra/2014/Abrahamson et al._2014_Summary of the ASK14 Ground Motion Relation for Ac.pdf
\endverb
\verb{urlraw}
\verb http://journals.sagepub.com/doi/10.1193/070913EQS198M
\endverb
\verb{url}
\verb http://journals.sagepub.com/doi/10.1193/070913EQS198M
\endverb
\endentry
\entry{akiQuantitativeSeismology2002}{book}{}
\name{author}{2}{}{%
{{hash=d0d10a492fabcf21e69918324fb2b7b6}{%
family={Aki},
familyi={A\bibinitperiod},
given={K.},
giveni={K\bibinitperiod}}}%
{{hash=599918319bad7a13fafdfcf37a556485}{%
family={Richards},
familyi={R\bibinitperiod},
given={Paul\bibnamedelima G.},
giveni={P\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
}
\list{location}{1}{%
{Sausalito, CA}%
}
\list{publisher}{1}{%
{University Science Books}%
}
\strng{namehash}{b1aaf24cb1bc764c2c22141d0920620a}
\strng{fullhash}{b1aaf24cb1bc764c2c22141d0920620a}
\strng{bibnamehash}{b1aaf24cb1bc764c2c22141d0920620a}
\strng{authorbibnamehash}{b1aaf24cb1bc764c2c22141d0920620a}
\strng{authornamehash}{b1aaf24cb1bc764c2c22141d0920620a}
\strng{authorfullhash}{b1aaf24cb1bc764c2c22141d0920620a}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{edition}{2}
\field{isbn}{0-935702-96-2}
\field{title}{Quantitative Seismology}
\field{year}{2002}
\field{dateera}{ce}
\endentry
\entry{akiAnalysisSeismicCoda1969}{article}{}
\name{author}{1}{}{%
{{hash=bd8de6cffe0dbd778578bbbe0924d3f3}{%
family={Aki},
familyi={A\bibinitperiod},
given={Keiiti},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{fullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{bibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorbibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authornamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorfullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\field{extraname}{1}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{A method was devised to extract useful information about the earthquake source from the coda of local small earthquakes. The method is based on the assumption that the power spectrum of coda waves of a local earthquake is only a function of time measured from the earthquake origin time and independent of distance and details of wave path to the station. Evidence supporting this assumption is presented, using the data on aftershocks of the Parkfield earthquakes of June 28, 1966. A simple statistical model of the wave medium that accounts for the observations on the coda is proposed. By applying the method to many Parkfield aftershocks, the relation between the seismic moment M0 and local magnitude ML is determined as log M0 (dyne cm) = 15.8 + 1.5ML. The size of a microearthquake with magnitude zero is estimated as 10×10 meters.}
\field{annotation}{\_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB074i002p00615}
\field{issn}{2156-2202}
\field{journaltitle}{Journal of Geophysical Research (1896-1977)}
\field{langid}{english}
\field{number}{2}
\field{title}{Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves}
\field{urlday}{17}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{74}
\field{year}{1969}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{615\bibrangedash 631}
\range{pages}{17}
\verb{doi}
\verb 10/dp5c4s
\endverb
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/GPEMSPE2/Aki_1969_Analysis of the seismic coda of local earthquakes .pdf
\endverb
\verb{urlraw}
\verb https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB074i002p00615
\endverb
\verb{url}
\verb https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB074i002p00615
\endverb
\endentry
\entry{akiAttenuationShearwavesLithosphere1980}{article}{}
\name{author}{1}{}{%
{{hash=bd8de6cffe0dbd778578bbbe0924d3f3}{%
family={Aki},
familyi={A\bibinitperiod},
given={Keiiti},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{fullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{bibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorbibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authornamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorfullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\field{extraname}{2}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{issn}{00319201}
\field{journaltitle}{Physics of the Earth and Planetary Interiors}
\field{langid}{english}
\field{month}{1}
\field{number}{1}
\field{shortjournal}{Physics of the Earth and Planetary Interiors}
\field{title}{Attenuation of Shear-Waves in the Lithosphere for Frequencies from 0.05 to 25 {{Hz}}}
\field{urlday}{26}
\field{urlmonth}{5}
\field{urlyear}{2021}
\field{volume}{21}
\field{year}{1980}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{50\bibrangedash 60}
\range{pages}{11}
\verb{doi}
\verb 10/bvtstw
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Physics of the Earth and Planetary Interiors/1980/Aki_1980_Attenuation of shear-waves in the lithosphere for .pdf
\endverb
\verb{urlraw}
\verb https://linkinghub.elsevier.com/retrieve/pii/0031920180900199
\endverb
\verb{url}
\verb https://linkinghub.elsevier.com/retrieve/pii/0031920180900199
\endverb
\endentry
\entry{akiLocalSiteEffects1993}{article}{}
\name{author}{1}{}{%
{{hash=bd8de6cffe0dbd778578bbbe0924d3f3}{%
family={Aki},
familyi={A\bibinitperiod},
given={Keiiti},
giveni={K\bibinitperiod}}}%
}
\strng{namehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{fullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{bibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorbibnamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authornamehash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\strng{authorfullhash}{bd8de6cffe0dbd778578bbbe0924d3f3}
\field{extraname}{3}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{This is a review of the current state of the art in characterizing effects of local geology on ground motion. A new horizon is clear in this aspect of strong motion studies. Non-linear amplification at sediment sites appears to be more pervasive than seismologists used to think. Several recent observations about the weak motion and the strong motion suggest that the non-linear amplification at sediment sites may be very common. First, on average, the amplification is always greater at the younger sediment sites for all frequencies up to 12 Hz, in the case of weak motion; while the relation is reversed for frequencies higher than 5 Hz, in the case of strong motion. Secondly, the application of the amplification factor determined from weak motion overestimates significantly the strong motion at sediment sites observed during the Loma Prieta earthquake within the epicentral distance of about 50 km. Thirdly, the variance of peak ground acceleration around the mean curve decreases with the increasing earthquake magnitude. Finally, the above non-linear effects are expected from geotechnical studies both in the magnitude of departure from the linear prediction and in the threshold acceleration level beyond which the non-linearity begins.}
\field{day}{15}
\field{issn}{0040-1951}
\field{journaltitle}{Tectonophysics}
\field{langid}{english}
\field{month}{2}
\field{number}{1}
\field{series}{New Horizons in Strong Motion: {{Seismic}} Studies and Engineering Practice}
\field{shortjournal}{Tectonophysics}
\field{title}{Local Site Effects on Weak and Strong Ground Motion}
\field{urlday}{22}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{218}
\field{year}{1993}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{93\bibrangedash 111}
\range{pages}{19}
\verb{doi}
\verb 10/bmnfcg
\endverb
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/RZVBBGNS/Aki_1993_Local site effects on weak and strong ground motio.pdf
\endverb
\verb{urlraw}
\verb https://www.sciencedirect.com/science/article/pii/004019519390262I
\endverb
\verb{url}
\verb https://www.sciencedirect.com/science/article/pii/004019519390262I
\endverb
\endentry
\entry{akiOriginCodaWaves1975}{article}{}
\name{author}{2}{}{%
{{hash=bd8de6cffe0dbd778578bbbe0924d3f3}{%
family={Aki},
familyi={A\bibinitperiod},
given={Keiiti},
giveni={K\bibinitperiod}}}%
{{hash=00edf68860104d2a5093d2ebdbc5c412}{%
family={Chouet},
familyi={C\bibinitperiod},
given={Bernard},
giveni={B\bibinitperiod}}}%
}
\strng{namehash}{f554175aa5b61c705d6299cf954ac761}
\strng{fullhash}{f554175aa5b61c705d6299cf954ac761}
\strng{bibnamehash}{f554175aa5b61c705d6299cf954ac761}
\strng{authorbibnamehash}{f554175aa5b61c705d6299cf954ac761}
\strng{authornamehash}{f554175aa5b61c705d6299cf954ac761}
\strng{authorfullhash}{f554175aa5b61c705d6299cf954ac761}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{shorttitle}
\field{abstract}{Coda waves from small local earthquakes are interpreted as backscattering waves from numerous heterogeneities distributed uniformly in the earth's crust. Two extreme models of the wave medium that account for the observations on the coda are proposed. In the single backscattering model the scattering is considered to be a weak process, and the loss of seismic energy by scattering is neglected. In the diffusion model the seismic energy transfer is considered as a diffusion process. Both models lead to similar formulas that allow an accurate separation of the effect of earthquake source from the effects of scattering and attenuation on the coda spectra. A unique difference was found in the scaling law of earthquake source spectra between central California and western Japan, which may be attributed to the difference in inhomogeneity length of the earth's crust. The Q of coda waves in the two regions is strongly frequency dependent with values increasing from 50–200 at 1 Hz to about 1000–2000 at 20 Hz. This observation is interpreted as a combined effect of variation of Q with depth and frequency-dependent composition of coda waves described below. The turbidity coefficient of the lithosphere required at 1 Hz to explain the observed coda as body wave scattering is orders of magnitude greater than previously known values such as those obtained by Aki (1973) and Capon (1974) under the Montana Lasa from the amplitude and phase fluctuations of teleseismic P waves. From the high attenuation and turbidity obtained at this frequency we conclude that at around 1 Hz the coda is made of backscattering surface waves from heterogeneities in the shallow, low-Q lithosphere. The high Q observed for the coda at frequencies higher than 10 Hz, on the other hand, eliminates the possibility that these waves are backscattering surface waves. We conclude that at these high frequencies the coda must be made of backscattering body waves from heterogeneities in the deep lithosphere. The low turbidities found for deep earthquake sources under western Japan are consistent with this model of coda wave generation.}
\field{annotation}{\_eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB080i023p03322}
\field{issn}{2156-2202}
\field{journaltitle}{Journal of Geophysical Research (1896-1977)}
\field{langid}{english}
\field{number}{23}
\field{shorttitle}{Origin of Coda Waves}
\field{title}{Origin of Coda Waves: {{Source}}, Attenuation, and Scattering Effects}
\field{urlday}{17}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{80}
\field{year}{1975}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{3322\bibrangedash 3342}
\range{pages}{21}
\verb{doi}
\verb 10/fdf5k7
\endverb
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/LESRW3DE/Aki and Chouet_1975_Origin of coda waves Source, attenuation, and sca.pdf
\endverb
\verb{urlraw}
\verb https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB080i023p03322
\endverb
\verb{url}
\verb https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB080i023p03322
\endverb
\endentry
\entry{akkarEmpiricalEquationsPrediction2010}{article}{}
\name{author}{2}{}{%
{{hash=59d20ad9ac38c56b7af659ff465db399}{%
family={Akkar},
familyi={A\bibinitperiod},
given={S.},
giveni={S\bibinitperiod}}}%
{{hash=92316d4ea200a55bb310d7c45243860c}{%
family={Bommer},
familyi={B\bibinitperiod},
given={J.\bibnamedelimi J.},
giveni={J\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
}
\strng{namehash}{67a04b98af1a58f07ae643939d90dea9}
\strng{fullhash}{67a04b98af1a58f07ae643939d90dea9}
\strng{bibnamehash}{67a04b98af1a58f07ae643939d90dea9}
\strng{authorbibnamehash}{67a04b98af1a58f07ae643939d90dea9}
\strng{authornamehash}{67a04b98af1a58f07ae643939d90dea9}
\strng{authorfullhash}{67a04b98af1a58f07ae643939d90dea9}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{day}{1}
\field{issn}{0895-0695}
\field{journaltitle}{Seismological Research Letters}
\field{langid}{english}
\field{month}{3}
\field{number}{2}
\field{shortjournal}{Seismological Research Letters}
\field{title}{Empirical Equations for the Prediction of {{PGA}}, {{PGV}}, and Spectral Accelerations in Europe, the Mediterranean Region, and the Middle East}
\field{urlday}{17}
\field{urlmonth}{2}
\field{urlyear}{2020}
\field{volume}{81}
\field{year}{2010}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{195\bibrangedash 206}
\range{pages}{12}
\verb{doi}
\verb 10.1785/gssrl.81.2.195
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Seismological Research Letters/2010/Akkar and Bommer_2010_Empirical equations for the prediction of PGA, PGV.pdf
\endverb
\verb{urlraw}
\verb https://pubs.geoscienceworld.org/srl/article/81/2/195-206/143661
\endverb
\verb{url}
\verb https://pubs.geoscienceworld.org/srl/article/81/2/195-206/143661
\endverb
\endentry
\entry{andersonQuantitativeMeasureGoodnessOfFit2004}{inproceedings}{}
\name{author}{1}{}{%
{{hash=078712db760fdddedb0cf025e5b058d1}{%
family={Anderson},
familyi={A\bibinitperiod},
given={John\bibnamedelima G},
giveni={J\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
}
\list{location}{1}{%
{Vancouver, B.C., Canada}%
}
\list{publisher}{1}{%
{Earthquake Engineering Research Institute}%
}
\strng{namehash}{078712db760fdddedb0cf025e5b058d1}
\strng{fullhash}{078712db760fdddedb0cf025e5b058d1}
\strng{bibnamehash}{078712db760fdddedb0cf025e5b058d1}
\strng{authorbibnamehash}{078712db760fdddedb0cf025e5b058d1}
\strng{authornamehash}{078712db760fdddedb0cf025e5b058d1}
\strng{authorfullhash}{078712db760fdddedb0cf025e5b058d1}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{To develop credibility of synthetic seismograms for engineering applications, there is a need for a quantitative score that can be used to characterize the how well the synthetic matches the statistical characteristics of observed records. Recognizing that strong motion is a very complex time series and any measure that relies on a single parameter for the comparison is seriously incomplete, this paper examines use of a suite of measurements. To be specific, we score seismograms that have been filtered into up to ten narrow pass-bands. Each frequency band is scored on ten different characteristics. The characteristics scored are the peak acceleration, peak velocity, peak displacement, Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration response spectrum on a frequency-by-frequency basis, the shape of the normalized integrals of acceleration and velocity squared, and the cross correlation. Each characteristic is compared on a scale from 0 to 10, with 10 giving perfect agreement. Scores for each parameter are averaged to yield an overall quality of fit. A score below 4 is a poor fit, a score of 4-6 is a fair fit, a score of 6 to 8 is a good fit, and a score over 8 is an excellent fit. One horizontal component of an actual seismogram typically fits the other horizontal component in the “good” range. The method is applied to a blind prediction of ground motions at a station 3 km from the fault in the M7.9 Denali Fault, Alaska, earthquake of November 3, 2002.}
\field{eventtitle}{The 13th {{World Conference}} on {{Earthquake Engineering}}}
\field{langid}{english}
\field{month}{8}
\field{title}{Quantitative {{Measure Of The Goodness}}-{{Of}}-{{Fit}} of {{Synthetic Seismograms}}}
\field{year}{2004}
\field{dateera}{ce}
\field{pages}{243}
\range{pages}{1}
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/JDN7QSYE/Anderson_Quantitative Measure Of The Goodness-Of-Fit of Syn.pdf
\endverb
\endentry
\entry{anderson1984model}{article}{}
\name{author}{2}{}{%
{{hash=078712db760fdddedb0cf025e5b058d1}{%
family={Anderson},
familyi={A\bibinitperiod},
given={John\bibnamedelima G},
giveni={J\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
{{hash=76e42e9e7d7be5837fc53096c716a2fb}{%
family={Hough},
familyi={H\bibinitperiod},
given={Susan\bibnamedelima E},
giveni={S\bibinitperiod\bibinitdelim E\bibinitperiod}}}%
}
\list{publisher}{1}{%
{The Seismological Society of America}%
}
\strng{namehash}{6497af0a9604fe3d9bee180fb72a2a57}
\strng{fullhash}{6497af0a9604fe3d9bee180fb72a2a57}
\strng{bibnamehash}{6497af0a9604fe3d9bee180fb72a2a57}
\strng{authorbibnamehash}{6497af0a9604fe3d9bee180fb72a2a57}
\strng{authornamehash}{6497af0a9604fe3d9bee180fb72a2a57}
\strng{authorfullhash}{6497af0a9604fe3d9bee180fb72a2a57}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{number}{5}
\field{title}{A Model for the Shape of the {{Fourier}} Amplitude Spectrum of Acceleration at High Frequencies}
\field{volume}{74}
\field{year}{1984}
\field{dateera}{ce}
\field{pages}{1969\bibrangedash 1993}
\range{pages}{25}
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Bulletin of the Seismological Society of America/1984/Anderson and Hough_1984_A model for the shape of the Fourier amplitude spe.pdf
\endverb
\keyw{⛔ No DOI found}
\endentry
\entry{andersonControlStrongMotion1996}{article}{}
\name{author}{4}{}{%
{{hash=078712db760fdddedb0cf025e5b058d1}{%
family={Anderson},
familyi={A\bibinitperiod},
given={John\bibnamedelima G.},
giveni={J\bibinitperiod\bibinitdelim G\bibinitperiod}}}%
{{hash=30d9bd1b42040fd9074aaa87f1230441}{%
family={Lee},
familyi={L\bibinitperiod},
given={Yajie},
giveni={Y\bibinitperiod}}}%
{{hash=7cbeb71b69259103e1b21a9bc0db16e4}{%
family={Zeng},
familyi={Z\bibinitperiod},
given={Yuehua},
giveni={Y\bibinitperiod}}}%
{{hash=6cec30b4ff4d11fc1eb00344a3f595c2}{%
family={Day},
familyi={D\bibinitperiod},
given={Steven},
giveni={S\bibinitperiod}}}%
}
\strng{namehash}{32eb4f55dfb8c49d48270a988d167729}
\strng{fullhash}{297fd5ade740769937be685d01a43da0}
\strng{bibnamehash}{297fd5ade740769937be685d01a43da0}
\strng{authorbibnamehash}{297fd5ade740769937be685d01a43da0}
\strng{authornamehash}{32eb4f55dfb8c49d48270a988d167729}
\strng{authorfullhash}{297fd5ade740769937be685d01a43da0}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Local site effects have an enormous influence on the character of ground motions. Currently, soil categories and site factors used in building codes for seismic design are generally based on, or at least correlated with, the seismic velocity of the surface layer. We note, however, that the upper 30 m (a typical depth of investigation) would almost never represent more than 1\% of the distance from the source; 0.1\% to 0.2\% would be more typical of situations where motion is damaging. We investigate the influence of this thin skin on the high-frequency properties of seismograms. We examine properties of seismograms consisting of vertically propagating S waves through an arbitrarily complex stack of flat, solid, elastic layers, where the properties of the lowermost layer (taken at 5 km depth) and a surface layer (thickness 30 m) are constrained. Input at the bottom of the stack is an impulse. We find that the character of the seismograms, and the peak spectral frequencies, are strongly influenced by the properties of the intervening layers. However, for infinite Q, the integral of amplitude squared at the surface (which determines energy if the input and output are regarded as velocity, or Arias intensity if the input and output are regarded as acceleration) is independent of the intervening layers. Also, the peak amplitude of the seismogram at the surface is relatively independent of the intervening properties. For finite, frequency-independent Q, the integral of amplitude squared and peak amplitude decrease as t* increases. There is some scatter that depends on the intervening layers, but it is surprisingly small.These calculations suggest that the surficial geology has a greater influence on ground motions than might be expected based on its thickness alone. They suggest that variable influences of Q along the entire path have a comparable importance for predictions of ground motions. Finally, they suggest that detailed characterization of deeper velocity structure in regions where a 1D model is appropriate gives only a limited amount of added information. Based on our 1D numerical results, we propose a new method to characterize these properties as site factors that could be used in building codes. Full three-dimensional synthetics are tested and give a similar conclusion.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{month}{12}
\field{number}{6}
\field{shortjournal}{Bulletin of the Seismological Society of America}
\field{title}{Control of Strong Motion by the Upper 30 Meters}
\field{volume}{86}
\field{year}{1996}
\field{dateera}{ce}
\field{pages}{1749\bibrangedash 1759}
\range{pages}{11}
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Bulletin of the Seismological Society of America/1996/Anderson et al._1996_Control of strong motion by the upper 30 meters.pdf
\endverb
\keyw{⛔ No DOI found}
\endentry
\entry{andrewsRuptureDynamicsEnergy2005}{article}{}
\name{author}{1}{}{%
{{hash=1f3bba17e07c927b9920ee0951d10599}{%
family={Andrews},
familyi={A\bibinitperiod},
given={D.\bibnamedelimi J.},
giveni={D\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
}
\strng{namehash}{1f3bba17e07c927b9920ee0951d10599}
\strng{fullhash}{1f3bba17e07c927b9920ee0951d10599}
\strng{bibnamehash}{1f3bba17e07c927b9920ee0951d10599}
\strng{authorbibnamehash}{1f3bba17e07c927b9920ee0951d10599}
\strng{authornamehash}{1f3bba17e07c927b9920ee0951d10599}
\strng{authorfullhash}{1f3bba17e07c927b9920ee0951d10599}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{issn}{0148-0227}
\field{journaltitle}{Journal of Geophysical Research}
\field{langid}{english}
\field{number}{B1}
\field{shortjournal}{J. Geophys. Res.}
\field{title}{Rupture Dynamics with Energy Loss Outside the Slip Zone}
\field{urlday}{4}
\field{urlmonth}{9}
\field{urlyear}{2019}
\field{volume}{110}
\field{year}{2005}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{B01307}
\range{pages}{-1}
\verb{doi}
\verb 10/dd9gwm
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Journal of Geophysical Research/2005/Andrews_2005_Rupture dynamics with energy loss outside the slip.pdf;/Users/hzfmer/GDrive_UCSD/Papers_zotero/Journal of Geophysical Research/2005/Andrews_2005_Rupture dynamics with energy loss outside the slip2.pdf;/Users/hzfmer/GDrive_UCSD/Papers_zotero/Journal of Geophysical Research/2005/Andrews_2005_Rupture dynamics with energy loss outside the slip2.pdf
\endverb
\verb{urlraw}
\verb http://doi.wiley.com/10.1029/2004JB003191
\endverb
\verb{url}
\verb http://doi.wiley.com/10.1029/2004JB003191
\endverb
\endentry
\entry{andrewsPhysicalLimitsGround2007}{article}{}
\name{author}{3}{}{%
{{hash=1f3bba17e07c927b9920ee0951d10599}{%
family={Andrews},
familyi={A\bibinitperiod},
given={D.\bibnamedelimi J.},
giveni={D\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
{{hash=38b3e63f5a618e79441ad25a89dc540b}{%
family={Hanks},
familyi={H\bibinitperiod},
given={Thomas\bibnamedelima C.},
giveni={T\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
{{hash=ab9653eec5413b249a5739b35a7434e5}{%
family={Whitney},
familyi={W\bibinitperiod},
given={John\bibnamedelima W.},
giveni={J\bibinitperiod\bibinitdelim W\bibinitperiod}}}%
}
\strng{namehash}{b682bcd4ba7ea2a67aadd2431756c8c1}
\strng{fullhash}{930f2c907a008796d7e64452a92b492f}
\strng{bibnamehash}{930f2c907a008796d7e64452a92b492f}
\strng{authorbibnamehash}{930f2c907a008796d7e64452a92b492f}
\strng{authornamehash}{b682bcd4ba7ea2a67aadd2431756c8c1}
\strng{authorfullhash}{930f2c907a008796d7e64452a92b492f}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr–Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{month}{12}
\field{number}{6}
\field{shortjournal}{Bulletin of the Seismological Society of America}
\field{title}{Physical {{Limits}} on {{Ground Motion}} at {{Yucca Mountain}}}
\field{urlday}{21}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{97}
\field{year}{2007}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{1771\bibrangedash 1792}
\range{pages}{22}
\verb{doi}
\verb 10/bvk3nq
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Bulletin of the Seismological Society of America/2007/Andrews et al._2007_Physical Limits on Ground Motion at Yucca Mountain.pdf
\endverb
\verb{urlraw}
\verb https://doi.org/10.1785/0120070014
\endverb
\verb{url}
\verb https://doi.org/10.1785/0120070014
\endverb
\endentry
\entry{arias1970measure}{report}{}
\name{author}{1}{}{%
{{hash=2ecbfdf640c91d95ad99dd2082b66041}{%
family={Arias},
familyi={A\bibinitperiod},
given={Arturo},
giveni={A\bibinitperiod}}}%
}
\list{institution}{1}{%
{Massachusetts Inst. of Tech., Cambridge. Univ. of Chile, Santiago de Chile}%
}
\strng{namehash}{2ecbfdf640c91d95ad99dd2082b66041}
\strng{fullhash}{2ecbfdf640c91d95ad99dd2082b66041}
\strng{bibnamehash}{2ecbfdf640c91d95ad99dd2082b66041}
\strng{authorbibnamehash}{2ecbfdf640c91d95ad99dd2082b66041}
\strng{authornamehash}{2ecbfdf640c91d95ad99dd2082b66041}
\strng{authorfullhash}{2ecbfdf640c91d95ad99dd2082b66041}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{title}{Measure of Earthquake Intensity.}
\field{year}{1970}
\field{dateera}{ce}
\endentry
\entry{ashfordAnalysisTopographicAmplification1997}{article}{}
\name{author}{2}{}{%
{{hash=f2d3de616d04d4f71af5ed52d421bc7d}{%
family={Ashford},
familyi={A\bibinitperiod},
given={Scott\bibnamedelima A.},
giveni={S\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
{{hash=f2841f44ef79fcad9c4a1bde5d29b806}{%
family={Sitar},
familyi={S\bibinitperiod},
given={Nicholas},
giveni={N\bibinitperiod}}}%
}
\strng{namehash}{f36ebaf9de42f624caacf5fa533de86b}
\strng{fullhash}{f36ebaf9de42f624caacf5fa533de86b}
\strng{bibnamehash}{f36ebaf9de42f624caacf5fa533de86b}
\strng{authorbibnamehash}{f36ebaf9de42f624caacf5fa533de86b}
\strng{authornamehash}{f36ebaf9de42f624caacf5fa533de86b}
\strng{authorfullhash}{f36ebaf9de42f624caacf5fa533de86b}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{The effect of inclined shear waves on the seismic response of a steep bluff is analyzed using generalized consistent transmitting boundaries. The results of the frequency-domain analysis of a stepped half-space subjected to incident shear waves inclined from 0° to 30° show that the motion at the crest of the slope is amplified for waves traveling into the slope and attenuated for waves traveling away from the slope, as compared to the motion in the free field behind the crest of the slope. This amplification can be as much as twice that observed for vertically propagating waves. A time-domain analysis of bluffs at Seacliff State Beach, California, is used to estimate the effect of topography using realistic conditions, taking into account wave inclination and site effects. The analysis of the site shows that although topographic amplification does in fact nearly double the amplitude of the motion in some cases, this amplification is offset by reduced site amplification and by wave splitting at material interfaces. Thus, the actual peak acceleration occurring at the crest of the slope changes little with incident angle as compared to the amplification of the free-field motion and actually decreases in many cases. Though a more general study is recommended, these results suggest that wave orientation and inclination substantially increase topographic amplification; however, it may be adequate to only account for vertically propagating waves for site response and slope stability analyses where only the magnitude of acceleration is considered.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{month}{6}
\field{number}{3}
\field{shortjournal}{Bulletin of the Seismological Society of America}
\field{title}{Analysis of Topographic Amplification of Inclined Shear Waves in a Steep Coastal Bluff}
\field{volume}{87}
\field{year}{1997}
\field{dateera}{ce}
\field{pages}{692\bibrangedash 700}
\range{pages}{9}
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Bulletin of the Seismological Society of America/1997/Ashford and Sitar_1997_Analysis of topographic amplification of inclined .pdf
\endverb
\keyw{⛔ No DOI found}
\endentry
\entry{assimakiSoilDependentTopographicEffects2005}{article}{}
\name{author}{3}{}{%
{{hash=9959895f922ddc16ff7d35e20ecd4cb5}{%
family={Assimaki},
familyi={A\bibinitperiod},
given={Dominic},
giveni={D\bibinitperiod}}}%
{{hash=eb3e04f52378bfb518c3da93185175b7}{%
family={Kausel},
familyi={K\bibinitperiod},
given={Eduardo},
giveni={E\bibinitperiod}}}%
{{hash=5cdd19a20e6f1051ab3e84a5904957a3}{%
family={Gazetas},
familyi={G\bibinitperiod},
given={George},
giveni={G\bibinitperiod}}}%
}
\list{publisher}{1}{%
{SAGE Publications Ltd STM}%
}
\strng{namehash}{cac92624762aadfe3df2599dffb59990}
\strng{fullhash}{d1457a420aabda2e9e65a7028e010669}
\strng{bibnamehash}{d1457a420aabda2e9e65a7028e010669}
\strng{authorbibnamehash}{d1457a420aabda2e9e65a7028e010669}
\strng{authornamehash}{cac92624762aadfe3df2599dffb59990}
\strng{authorfullhash}{d1457a420aabda2e9e65a7028e010669}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{shorttitle}
\field{abstract}{In the Ms 5.9 Athens, Greece, earthquake, surprisingly heavy damage occurred on the eastern bank of the Kifissos River canyon. To explore whether the particular topographic relief and/or the local soil conditions have contributed to the observed concentration and non-uniform damage distribution within a 300-m zone from the canyon crest, we conduct finite-element analyses in one and two dimensions, using Ricker wavelets and six realistic accelerograms as excitation. The nonlinear soil response is simulated in the time-domain using a hyperbolic stress-strain model, and also approximated using a modified equivalent-linear algorithm; results obtained by means of the two methods are discussed in detail. Our simulations show that topographic effects are substantial only within about 50 m from the canyon ridge, materializing primarily because of the presence of relatively soft soil layers near the surface of the profile. We then introduce the concept of two-dimensional/one-dimensional response spectral ratio to describe the effects of topography as a function of local soil conditions, and suggest a frequency- and location-dependent topographic aggravation factor to be introduced for the modification of design spectra in a seismic code.}
\field{day}{1}
\field{issn}{8755-2930}
\field{journaltitle}{Earthquake Spectra}
\field{langid}{english}
\field{month}{11}
\field{number}{4}
\field{shortjournal}{Earthquake Spectra}
\field{shorttitle}{Soil-{{Dependent Topographic Effects}}}
\field{title}{Soil-{{Dependent Topographic Effects}}: {{A Case Study}} from the 1999 {{Athens Earthquake}}}
\field{urlday}{15}
\field{urlmonth}{6}
\field{urlyear}{2021}
\field{volume}{21}
\field{year}{2005}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{929\bibrangedash 966}
\range{pages}{38}
\verb{doi}
\verb 10/fjcj5s
\endverb
\verb{file}
\verb /Users/hzfmer/GDrive_UCSD/Papers_zotero/Earthquake Spectra/2005/Assimaki et al._2005_Soil-Dependent Topographic Effects A Case Study f.pdf
\endverb
\verb{urlraw}
\verb https://doi.org/10.1193/1.2068135
\endverb
\verb{url}
\verb https://doi.org/10.1193/1.2068135
\endverb
\endentry
\entry{asterHighfrequencyBoreholeSeismograms1991}{article}{}
\name{author}{2}{}{%
{{hash=2abb430999729c5047782bddf1f69df3}{%
family={Aster},
familyi={A\bibinitperiod},
given={Richard\bibnamedelima C.},
giveni={R\bibinitperiod\bibinitdelim C\bibinitperiod}}}%
{{hash=ee176653aab0517cf682e8a5f2302e1a}{%
family={Shearer},
familyi={S\bibinitperiod},
given={Peter\bibnamedelima M.},
giveni={P\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
}
\strng{namehash}{1b5e03e60dd5245e831b176c6cd95a2a}
\strng{fullhash}{1b5e03e60dd5245e831b176c6cd95a2a}
\strng{bibnamehash}{1b5e03e60dd5245e831b176c6cd95a2a}
\strng{authorbibnamehash}{1b5e03e60dd5245e831b176c6cd95a2a}
\strng{authornamehash}{1b5e03e60dd5245e831b176c6cd95a2a}
\strng{authorfullhash}{1b5e03e60dd5245e831b176c6cd95a2a}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{Two borehole seismometer arrays (KNW-BH and PFO-BH) have been established in the Southern California Batholith region of the San Jacinto Fault zone by the U.S. Geological Survey. The sites are within 0.4 km of Anza network surface stations and have three-component seismometers deployed at 300 m depth, at 150 m depth, and at the surface. Downhole horizontal seismometers can be oriented to an accuracy of about 5° using regional and near-regional initial P-wave particle motions.Shear waves recorded downhole at the KNW-BH indicate that the strong alignment of initial S-wave particle motions previously observed at the (surface) KNW Anza site (KNW-AZ) is not generated in the near-surface weathered layer. The KNW-BH surface instrument, which sits atop a highly weathered zone, displays a significantly different (≈ 20°) initial S-wave polarization direction from that observed downhole and at KNW-AZ, which is bolted to an outcrop. Although downhole initial shear-wave particle motion directions are consistent with a shear-wave splitting hypothesis, observations of orthogonally polarized slow shear waves are generally elusive, even in seismograms recorded at 300 m. A cross-correlation measure of the apparent relative velocities of Sfast and Sslow horizontally polarized S waves suggests shallow shear-wave anisotropy, consistent with the observed initial S-wave particle motion direction, of 2.3 ± 1.7 per cent between 300 and 150 m and 7.5 ± 3.5 per cent between 150 and 0 m.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{month}{8}
\field{number}{4}
\field{shortjournal}{Bulletin of the Seismological Society of America}
\field{title}{High-Frequency Borehole Seismograms Recorded in the {{San Jacinto Fault}} Zone, {{Southern California}}. {{Part}} 1. {{Polarizations}}}
\field{volume}{81}
\field{year}{1991}
\field{dateera}{ce}
\field{pages}{1057\bibrangedash 1080}
\range{pages}{24}
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/M4NDAVGK/Aster and Shearer_1991_High-frequency borehole seismograms recorded in th.pdf
\endverb
\keyw{⛔ No DOI found}
\endentry
\entry{atikVariabilityGroundmotionPrediction2010}{article}{}
\name{author}{6}{}{%
{{hash=7b1857d6f042fccfbb276e5c627f5fa9}{%
family={Atik},
familyi={A\bibinitperiod},
given={L.\bibnamedelimi A.},
giveni={L\bibinitperiod\bibinitdelim A\bibinitperiod}}}%
{{hash=b4e5afafd208af8870f4931f0e73c165}{%
family={Abrahamson},
familyi={A\bibinitperiod},
given={N.},
giveni={N\bibinitperiod}}}%
{{hash=92316d4ea200a55bb310d7c45243860c}{%
family={Bommer},
familyi={B\bibinitperiod},
given={J.\bibnamedelimi J.},
giveni={J\bibinitperiod\bibinitdelim J\bibinitperiod}}}%
{{hash=dfed449d06020b9a08644cb6039b1f7e}{%
family={Scherbaum},
familyi={S\bibinitperiod},
given={F.},
giveni={F\bibinitperiod}}}%
{{hash=ecef041cfc99c2932c490fff682c0c89}{%
family={Cotton},
familyi={C\bibinitperiod},
given={F.},
giveni={F\bibinitperiod}}}%
{{hash=acc0c6e5a03c6afdd3c4eb49ff6ee566}{%
family={Kuehn},
familyi={K\bibinitperiod},
given={N.},
giveni={N\bibinitperiod}}}%
}
\strng{namehash}{6fca21a94d23e9292e464babb3dabb45}
\strng{fullhash}{bd5ee27ad8c20249c722edc0d8933bb1}
\strng{bibnamehash}{bd5ee27ad8c20249c722edc0d8933bb1}
\strng{authorbibnamehash}{bd5ee27ad8c20249c722edc0d8933bb1}
\strng{authornamehash}{6fca21a94d23e9292e464babb3dabb45}
\strng{authorfullhash}{bd5ee27ad8c20249c722edc0d8933bb1}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{day}{1}
\field{issn}{0895-0695}
\field{journaltitle}{Seismological Research Letters}
\field{langid}{english}
\field{month}{9}
\field{number}{5}
\field{shortjournal}{Seismological Research Letters}
\field{title}{The Variability of Ground-Motion Prediction Models and Its Components}
\field{urlday}{18}
\field{urlmonth}{2}
\field{urlyear}{2020}
\field{volume}{81}
\field{year}{2010}
\field{dateera}{ce}
\field{urldateera}{ce}
\field{pages}{794\bibrangedash 801}
\range{pages}{8}
\verb{doi}
\verb 10.1785/gssrl.81.5.794
\endverb
\verb{file}
\verb /Users/hzfmer/Nutstore/Zotero/storage/P556XI63/Atik et al._2010_The Variability of Ground-Motion Prediction Models.pdf
\endverb
\verb{urlraw}
\verb https://pubs.geoscienceworld.org/srl/article/81/5/794-801/143735
\endverb
\verb{url}
\verb https://pubs.geoscienceworld.org/srl/article/81/5/794-801/143735
\endverb
\endentry
\entry{atkinsonEarthquakeGroundmotionPrediction2006}{article}{}
\name{author}{2}{}{%
{{hash=d062bb8f80c1e088072bcf5ecae8699c}{%
family={Atkinson},
familyi={A\bibinitperiod},
given={G.\bibnamedelimi M.},
giveni={G\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
{{hash=32a637f8554823741e0558bb3fda37a5}{%
family={Boore},
familyi={B\bibinitperiod},
given={D.\bibnamedelimi M.},
giveni={D\bibinitperiod\bibinitdelim M\bibinitperiod}}}%
}
\strng{namehash}{a422b7469043d24f9a1cca8e51299716}
\strng{fullhash}{a422b7469043d24f9a1cca8e51299716}
\strng{bibnamehash}{a422b7469043d24f9a1cca8e51299716}
\strng{authorbibnamehash}{a422b7469043d24f9a1cca8e51299716}
\strng{authornamehash}{a422b7469043d24f9a1cca8e51299716}
\strng{authorfullhash}{a422b7469043d24f9a1cca8e51299716}
\field{sortinit}{A}
\field{sortinithash}{2f401846e2029bad6b3ecc16d50031e2}
\field{extradatescope}{labelyear}
\field{labeldatesource}{}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{abstract}{New earthquake ground-motion relations for hard-rock and soil sites in eastern North America (ENA), including estimates of their aleatory uncertainty (variability) have been developed based on a stochastic finite-fault model. The model incorporates new information obtained from ENA seismographic data gathered over the past 10 years, including three-component broadband data that provide new information on ENA source and path effects. Our new prediction equations are similar to the previous ground-motion prediction equations of Atkinson and Boore (1995), which were based on a stochastic point-source model. The main difference is that high-frequency amplitudes (f Ն 5 Hz) are less than previously predicted (by about a factor of 1.6 within 100 km), because of a slightly lower average stress parameter (140 bars versus 180 bars) and a steeper near-source attenuation. At frequencies less than 5 Hz, the predicted ground motions from the new equations are generally within 25\% of those predicted by Atkinson and Boore (1995). The prediction equations agree well with available ENA ground-motion data as evidenced by near-zero average residuals (within a factor of 1.2) for all frequencies, and the lack of any significant residual trends with distance. However, there is a tendency to positive residuals for moderate events at high frequencies in the distance range from 30 to 100 km (by as much as a factor of 2). This indicates epistemic uncertainty in the prediction model. The positive residuals for moderate events at Ͻ100 km could be eliminated by an increased stress parameter, at the cost of producing negative residuals in other magnitude-distance ranges; adjustment factors to the equations are provided that may be used to model this effect.}
\field{day}{1}
\field{issn}{0037-1106}
\field{journaltitle}{Bulletin of the Seismological Society of America}
\field{langid}{english}
\field{month}{12}
\field{number}{6}