Skip to content

Official Pytorch implementations for "MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation" (WACV 2024)

License

Notifications You must be signed in to change notification settings

hyunwoo137/MetaSeg

Repository files navigation

MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation (WACV 2024)

📝Paper

Beoungwoo Kang*, Seunghun Moon*, Yubin Cho*, Hyunwoo Yu*, Suk-ju Kang

* Equal contribution, Correspondence

Sogang University

This repository contains the official Pytorch implementation of training & evaluation code for MetaSeg.

metaseg

Installation

For install and data preparation, please refer to the guidelines in MMSegmentation v0.24.1.

pip install timm
cd MetaSeg
python setup.py develop

Training

Download backbone (MSCAN-T & MSCAN-B) pretrained weights in here.

Put them in a folder pretrain/.

Example - Train MetaSeg-T on ADE20K:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/dist_train.sh local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py <GPU_NUM>

Evaluation

Download trained weights.

Example - Evaluate MetaSeg-T on ADE20K:

# Single-gpu testing
CUDA_VISIBLE_DEVICES=0 python tools/test.py local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py /path/to/checkpoint_file

# Multi-gpu testing
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/dist_test.sh local_configs/metaseg/tiny/metaseg.tiny.512x512.ade.160k.py /path/to/checkpoint_file <GPU_NUM>

Citation

@inproceedings{kang2024metaseg,
  title={MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation},
  author={Kang, Beoungwoo and Moon, Seunghun and Cho, Yubin and Yu, Hyunwoo and Kang, Suk-Ju},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={434--443},
  year={2024}
}

About

Official Pytorch implementations for "MetaSeg: MetaFormer-based Global Contexts-aware Network for Efficient Semantic Segmentation" (WACV 2024)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages