-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathDfUSMC.cpp
739 lines (629 loc) · 23.9 KB
/
DfUSMC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
//
// DfUSMC.cpp
// DfUSMC
//
// Created by Hyowon Ha on 2016. 6. 11..
// Copyright © 2016 Hyowon Ha. All rights reserved.
//
#include "DfUSMC.hpp"
void DfUSMC::LoadSmallMotionClip(char *fullpath)
{
VideoCapture cap(fullpath);
if(!cap.isOpened()) // check if we succeeded
return;
num_image=cap.get(CV_CAP_PROP_FRAME_COUNT)+1;
cout<<"num frame: "<<num_image<<endl;
num_image=(num_image>30)?30:num_image;
cout<<"We use "<<num_image<<" images in the beginning."<<endl;
image_width=cap.get(CV_CAP_PROP_FRAME_WIDTH);
image_height=cap.get(CV_CAP_PROP_FRAME_HEIGHT);
cout<< "image size: "<<image_width<<" "<<image_height<<endl;
for(int i=0;i<num_image;i++)
{
Mat frame;
cap >> frame; // get a new frame from camera
images.push_back(frame);
}
}
void DfUSMC::SaveReferenceImage(char *fullpath)
{
imwrite(fullpath, images[0]);
imshow("Reference image", images[0]);
waitKey(1);
}
void DfUSMC::FeatureExtractionAndTracking()
{
Mat img_ref=images.at(0);
Mat gray_ref;
cvtColor(img_ref, gray_ref, CV_RGB2GRAY);
// feature extraction (other features can be used instead of Harris corner)
vector<Point2f> corners_ref;
goodFeaturesToTrack(gray_ref, corners_ref, 20000, 1e-10, 5, noArray(), 10);
int num_corner=corners_ref.size();
cout<<"num extracted corner:"<<num_corner<<endl;
Mat img=img_ref.clone();
for(int i = 0; i < num_corner; i++ )
circle( img, corners_ref[i], 3, Scalar(0,0,255), 2);
bool *inlier_mask=new bool[num_corner];
features=Mat(2,num_corner,CV_32FC1);
for(int i=0;i<num_corner;i++) {
inlier_mask[i]=true;
features.at<float>(0,i)=corners_ref[i].x;
features.at<float>(1,i)=corners_ref[i].y;
}
// feature tracking (reference <-> non-reference)
for(int i=1;i<num_image;i++) {
vector<Point2f> corners_fwd;
vector<Point2f> corners_bwd;
vector<unsigned char> status_fwd;
vector<unsigned char> status_bwd;
vector<float> err_fwd;
vector<float> err_bwd;
Mat gray;
cvtColor(images.at(i), gray, CV_RGB2GRAY);
calcOpticalFlowPyrLK(gray_ref, gray, corners_ref, corners_fwd, status_fwd, err_fwd);
calcOpticalFlowPyrLK(gray, gray_ref, corners_fwd, corners_bwd, status_bwd, err_bwd);
Mat features_i=Mat(2,num_corner,CV_32FC1);
for(int j=0;j<num_corner;j++){
features_i.at<float>(0,j)=corners_fwd[j].x;
features_i.at<float>(1,j)=corners_fwd[j].y;
float bidirectional_error=norm(corners_ref[j]-corners_bwd[j]);
if(status_fwd[j]==0 || status_bwd[j]==0 || bidirectional_error>0.1)
inlier_mask[j]=false;
}
features.push_back(features_i);
}
int num_inlier=0;
for(int i=0;i<num_corner;i++) {
if(inlier_mask[i]) {
num_inlier++;
circle( img, corners_ref[i], 3, Scalar(0,255,0), 2);
}
}
namedWindow("corners");
imshow("corners",img);
waitKey(100);
cout<<"num inlier: "<<num_inlier<<"/"<<num_corner<<endl;
Mat features_bak=features.clone();
features=Mat(2*num_image,num_inlier,CV_32FC1);
int idx=0;
for(int i=0;i<num_corner;i++) {
if(inlier_mask[i]){
for(int j=0;j<2*num_image;j++) {
features.at<float>(j,idx)=features_bak.at<float>(j,i);
}
idx++;
}
}
num_feature=num_inlier;
}
struct BACostFunction {
BACostFunction(double focal_length, double cx, double cy, double u0, double v0, double u, double v)
: focal_length(focal_length), cx(cx), cy(cy), u0(u0), v0(v0), u(u), v(v) {}
template <typename T>
bool operator()(const T* const camera,
const T* const point,
const T* const intrinsic,
T* residuals) const {
T f=intrinsic[0]*T(focal_length);
T k1=intrinsic[1]/T(10.0);
T k2=intrinsic[2]/T(10.0);
T du0_= T(u0)-T(cx);
T dv0_= T(v0)-T(cy);
T dx0_= du0_/f;
T dy0_= dv0_/f;
T r20_= dx0_*dx0_ + dy0_*dy0_;
T distort0_=T(1.0) + k1*r20_ + k2*r20_*r20_;
T du0=du0_*distort0_;
T dv0=dv0_*distort0_;
T w=point[0];
T p[3];
T rx=camera[0], ry=camera[1], rz=camera[2];
T tx=camera[3], ty=camera[4], tz=camera[5];
p[0] = du0 - rz*dv0 + f*ry + f*tx*w;
p[1] = rz*du0 + dv0 - f*rx + f*ty*w;
p[2] = -ry*du0 + rx*dv0 + f + f*tz*w;
T up = f * p[0] / p[2];
T vp = f * p[1] / p[2];
T du_ = T(u)-T(cx);
T dv_ = T(v)-T(cy);
T dx_ = du_/f;
T dy_ = dv_/f;
T r2_ = dx_*dx_ + dy_*dy_;
T distort_=T(1.0) + k1*r2_ + k2*r2_*r2_;
T du=du_*distort_;
T dv=dv_*distort_;
residuals[0] = du - up;
residuals[1] = dv - vp;
return true;
}
static ceres::CostFunction* Create(const double focal_length, const double cx, const double cy,
const double u0, const double v0,
const double u, const double v) {
return (new ceres::AutoDiffCostFunction<BACostFunction, 2, 6, 1, 3>(new BACostFunction(focal_length,cx,cy,u0,v0,u,v)));
}
double focal_length;
double cx;
double cy;
double u0;
double v0;
double u;
double v;
};
void DfUSMC::BundleAdjustment(double f_init, double k1_init, double k2_init) {
// fix principal point at the center
cx=image_width/2;
cy=image_height/2;
poses=new double[6*num_image];
inv_depths=new double[num_feature];
// initialization
for(int i=0;i<6*num_image;i++)
poses[i]=0.0;
srand(time(NULL));
double w_min=0.01, w_max=1.0;
for(int i=0;i<num_feature;i++)
inv_depths[i]=w_min+(w_max-w_min)*double(rand())/RAND_MAX;
double variables[3];
variables[0]=1.0; // scaling factor w.r.t. f_init
variables[1]=k1_init*10.0; // regularize scale
variables[2]=k2_init*10.0; // regularize scale
ceres::Problem problem;
for (int i=0;i<num_feature;i++) {
double u0=features.at<float>(0,i);
double v0=features.at<float>(1,i);
for (int j=1;j<num_image;j++) {
double u=features.at<float>(j*2+0,i);
double v=features.at<float>(j*2+1,i);
ceres::CostFunction* cost_function = BACostFunction::Create(f_init, cx, cy, u0, v0, u, v);
problem.AddResidualBlock(cost_function,
new ceres::HuberLoss(1.0),
poses + (j*6),
inv_depths + (i),
variables);
}
}
ceres::Solver::Options options;
options.linear_solver_type = ceres::ITERATIVE_SCHUR;
options.max_num_iterations = 100;
// options.num_threads = 8;
options.minimizer_progress_to_stdout = true;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
f=f_init*variables[0];
k1=variables[1]/10.0;
k2=variables[2]/10.0;
cout<<"focal length: "<<f<<endl;
cout<<"radial distortion: "<<k1<<" "<<k2<<endl;
int cnt=0;
for(int i=0;i<num_feature;i++) {
if(inv_depths[i]<0) cnt++;
}
// when result is flipped
if(cnt>num_feature-cnt) {
for(int i=0;i<num_feature;i++) {
inv_depths[i]*=-1.0;
}
for(int i=0;i<num_image;i++) {
poses[i*6+3]*=-1.0;
poses[i*6+4]*=-1.0;
poses[i*6+5]*=-1.0;
}
}
}
void DfUSMC::BundleAdjustment() { // when no input is given
BundleAdjustment((image_width>image_height)?image_width:image_height,
0.0, 0.0);
}
void DfUSMC::SavePointCloudPLY(char *fullpath) {
Mat img_ref=images.at(0);
unsigned char *imageData = (unsigned char*)img_ref.data;
FILE *out=fopen(fullpath,"wb");
fprintf(out,"ply\n");
fprintf(out,"format binary_little_endian 1.0\n");
fprintf(out,"element vertex %d\n",num_image+num_feature);
fprintf(out,"property float x\n");
fprintf(out,"property float y\n");
fprintf(out,"property float z\n");
fprintf(out,"property uchar diffuse_red\n");
fprintf(out,"property uchar diffuse_green\n");
fprintf(out,"property uchar diffuse_blue\n");
fprintf(out,"end_header\n");
for(int i=0;i<num_image;i++) {
double rx=poses[i*6+0],ry=poses[i*6+1],rz=poses[i*6+2];
double tx=poses[i*6+3],ty=poses[i*6+4],tz=poses[i*6+5];
float x_cam=-tx-rz*ty+ry*tz;
float y_cam=rz*tx-ty-rx*tz;
float z_cam=-ry*tx+rx*ty-tz;
fwrite(&x_cam, sizeof(float), 1, out);
fwrite(&y_cam, sizeof(float), 1, out);
fwrite(&z_cam, sizeof(float), 1, out);
double h=i/double(num_image);
double B=fmax(fmin(1.5-4*fabs(h-1/4.0),1.0),0.0);
double G=fmax(fmin(1.5-4*fabs(h-2/4.0),1.0),0.0);
double R=fmax(fmin(1.5-4*fabs(h-3/4.0),1.0),0.0);
unsigned char R2=(unsigned char)(R*255);
unsigned char G2=(unsigned char)(G*255);
unsigned char B2=(unsigned char)(B*255);
fwrite(&R2, sizeof(unsigned char), 1, out);
fwrite(&G2, sizeof(unsigned char), 1, out);
fwrite(&B2, sizeof(unsigned char), 1, out);
}
for(int i=0;i<num_feature;i++) {
double u0_=features.at<float>(0,i);
double v0_=features.at<float>(1,i);
double du0_=u0_-cx;
double dv0_=v0_-cy;
double x0_=du0_/f;
double y0_=dv0_/f;
double r20_=x0_*x0_+y0_*y0_;
double distort0_=1+k1*r20_+k2*r20_*r20_;
double x0=x0_*distort0_;
double y0=y0_*distort0_;
float X=x0/inv_depths[i];
float Y=y0/inv_depths[i];
float Z=1.0/inv_depths[i];
fwrite(&X, sizeof(float), 1, out);
fwrite(&Y, sizeof(float), 1, out);
fwrite(&Z, sizeof(float), 1, out);
// take the RGB intensities of the closest pixel.
int u0=int(u0_+0.5);
int v0=int(v0_+0.5);
unsigned char R=imageData[v0*image_width*3+u0*3+2];
unsigned char G=imageData[v0*image_width*3+u0*3+1];
unsigned char B=imageData[v0*image_width*3+u0*3+0];
fwrite(&R, sizeof(unsigned char), 1, out);
fwrite(&G, sizeof(unsigned char), 1, out);
fwrite(&B, sizeof(unsigned char), 1, out);
}
fclose(out);
}
void DfUSMC::UndistortImages() {
// find 'f_new' to keep every pixel
double min_x=0, max_x=0;
double min_y=0, max_y=0;
for(int i=0;i<image_height;i++){
for(int j=0;j<image_width;j++){
double xij=(j-cx)/f;
double yij=(i-cy)/f;
double r2ij=xij*xij+yij*yij;
double rad=1+k1*r2ij+k2*r2ij*r2ij;
double xij_=xij*rad;
double yij_=yij*rad;
if(xij_<min_x) min_x=xij_;
if(xij_>max_x) max_x=xij_;
if(yij_<min_y) min_y=yij_;
if(yij_>max_y) max_y=yij_;
}
}
double f_min_x=-cx/min_x;
double f_max_x=(image_width-cx)/max_x;
double f_min_y=-cy/min_y;
double f_max_y=(image_height-cy)/max_y;
double tempx=(f_min_x<f_max_x)?f_min_x:f_max_x;
double tempy=(f_min_y<f_max_y)?f_min_y:f_max_y;
f_new=(tempx<tempy)?tempx:tempy;
// meshgrid
float *x_=new float[image_height*image_width];
float *y_=new float[image_height*image_width];
for(int i=0;i<image_height;i++) {
for(int j=0;j<image_width;j++) {
x_[i*image_width+j]=(j-cx)/f_new;
y_[i*image_width+j]=(i-cy)/f_new;
}
}
Mat x=Mat(image_height,image_width,CV_32F,x_);
Mat y=Mat(image_height,image_width,CV_32F,y_);
Mat x_bak=x.clone();
Mat y_bak=y.clone();
// iteratively find the inverse mapping
for(int i=0;i<10;i++) {
Mat x1=x.clone();
Mat y1=y.clone();
Mat x2=x1.mul(x1);
Mat y2=y1.mul(y1);
Mat x3=x2.mul(x1);
Mat y3=y2.mul(y1);
Mat r2=x2+y2;
Mat r4=r2.mul(r2);
Mat r2x=2*x1;
Mat r2y=2*y1;
Mat r4x=(4*x3)+(4*x1.mul(y2));
Mat r4y=(4*x2.mul(y1))+(4*y3);
Mat dist=1.0+(k1*r2)+(k2*r4);
Mat x__=x1.mul(dist);
Mat y__=y1.mul(dist);
Mat rx=x_bak-x__;
Mat ry=y_bak-y__;
Mat rxx=-1-(k1*r2)-(k2*r4)-(k1*x1.mul(r2x))-(k2*x1.mul(r4x));
Mat rxy=-(k1*x1.mul(r2y))-(k2*x1.mul(r4y));
Mat ryx=-(k1*y1.mul(r2x))-(k2*y1.mul(r4x));
Mat ryy=-1-(k1*r2)-(k2*r4)-(k1*y1.mul(r2y))-(k2*y1.mul(r4y));
Mat a=rxx.mul(rxx)+ryx.mul(ryx);
Mat b=rxx.mul(rxy)+ryx.mul(ryy);
Mat c=b;
Mat d=rxy.mul(rxy)+ryy.mul(ryy);
Mat det=(a.mul(d))-(b.mul(c));
Mat dx=-(1/det).mul( (d.mul(rxx)-b.mul(rxy)).mul(rx) + (d.mul(ryx)-b.mul(ryy)).mul(ry) );
Mat dy=-(1/det).mul( (-c.mul(rxx)+a.mul(rxy)).mul(rx) + (-c.mul(ryx)+a.mul(ryy)).mul(ry) );
x=x+dx;
y=y+dy;
}
Mat udx=(f*x+cx);
ud_mapx=udx.clone();
Mat udy=(f*y+cy);
ud_mapy=udy.clone();
}
void DfUSMC::DenseMatching(double scale, int num_label, double lambda, double sigma){
double _f=f_new*scale;
double _cx=cx*scale;
double _cy=cy*scale;
Mat temp;
resize(images[0],temp,Size(),scale,scale);
int row=temp.rows;
int col=temp.cols;
// min. depth
double max_inv_depth=0;
for(int i=0;i<num_feature;i++) {
if(max_inv_depth<inv_depths[i])
max_inv_depth=inv_depths[i];
}
// set the close end of the depth range to be closer than the min. depth
double min_w=0.0; // starting inv.depth; 0 means infinity
double max_w=max_inv_depth*1.1; // you can adjust this scaling factor for depth margin.
double dw=(max_w-min_w)/(num_label-1);
// 3x3 box filter
float window_[9]={1/9.0,1/9.0,1/9.0,1/9.0,1/9.0,1/9.0,1/9.0,1/9.0,1/9.0};
Mat window=Mat(3,3,CV_32FC1,window_);
Mat *rimg=new Mat[num_image];
Mat *gimg=new Mat[num_image];
Mat *bimg=new Mat[num_image];
Mat *gximg=new Mat[num_image];
Mat *gyimg=new Mat[num_image];
for(int i=0;i<num_image;i++) {
rimg[i]=Mat(row,col,CV_32FC1);
gimg[i]=Mat(row,col,CV_32FC1);
bimg[i]=Mat(row,col,CV_32FC1);
Mat img_dist;
images[i].convertTo(img_dist,CV_32FC3,1/255.0);
Mat img_undist;
remap(img_dist, img_undist, ud_mapx, ud_mapy, CV_INTER_CUBIC);
Mat _img_undist;
resize(img_undist,_img_undist,Size(),scale,scale);
imshow("undistorted images",_img_undist);
waitKey(33);
vector<Mat> channels(3);
split(_img_undist, channels);
channels[2].copyTo(rimg[i]);
channels[1].copyTo(gimg[i]);
channels[0].copyTo(bimg[i]);
Mat gray_undist;
cvtColor(_img_undist,gray_undist,COLOR_BGR2GRAY);
Sobel(gray_undist,gximg[i],gray_undist.depth(),1,0,1,1/2.0);
Sobel(gray_undist,gyimg[i],gray_undist.depth(),0,1,1,1/2.0);
}
Mat u0=Mat(row,col,CV_32FC1);
Mat v0=Mat(row,col,CV_32FC1);
Mat x0=Mat(row,col,CV_32FC1);
Mat y0=Mat(row,col,CV_32FC1);
// meshgrid
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
u0.at<float>(i,j)=j;
v0.at<float>(i,j)=i;
x0.at<float>(i,j)=j/_f - _cx/_f;
y0.at<float>(i,j)=i/_f - _cy/_f;
}
}
// compute the d->u mapping for distorting the final depth map.
Mat xd=Mat(image_height, image_width, CV_32F);
Mat yd=Mat(image_height, image_width, CV_32F);
for(int i=0;i<image_height;i++) {
for(int j=0;j<image_width;j++) {
xd.at<float>(i,j)=(j-cx)/f;
yd.at<float>(i,j)=(i-cy)/f;
}
}
Mat r2d=xd.mul(xd)+yd.mul(yd);
Mat rad=1+k1*r2d+k2*r2d.mul(r2d);
Mat xd_=xd.mul(rad);
Mat yd_=yd.mul(rad);
du_mapx=_f*xd_+_cx;
du_mapy=_f*yd_+_cy;
Mat *rps=new Mat[num_image];
Mat *gps=new Mat[num_image];
Mat *bps=new Mat[num_image];
Mat *gxps=new Mat[num_image];
Mat *gyps=new Mat[num_image];
float *confidence=new float[row*col];
float *cost=new float[row*col];
float *minconfidence=new float[row*col];
float *mincost=new float[row*col];
int *mincostlabel=new int[row*col];
for(int i=0;i<row*col;i++) {
mincost[i]=9999999;
mincostlabel[i]=0;
}
for(int l=0;l<num_label;l++) {
cout << "Plane Sweeping: " << l << " / " << num_label << endl;
float w = min_w + float(l)*dw;
for(int n=0;n<num_image;n++) {
rps[n]=Mat(row,col,CV_32FC1);
gps[n]=Mat(row,col,CV_32FC1);
bps[n]=Mat(row,col,CV_32FC1);
gxps[n]=Mat(row,col,CV_32FC1);
gyps[n]=Mat(row,col,CV_32FC1);
float h00=1, h01=-poses[n*6+2], h02=poses[n*6+1]+poses[n*6+3]*w;
float h10=poses[n*6+2], h11=1, h12=-poses[n*6+0]+poses[n*6+4]*w;
float h20=-poses[n*6+1],h21=poses[n*6+0], h22=1+poses[n*6+5]*w;
Mat x1=h00*x0 + h01*y0 + h02;
Mat y1=h10*x0 + h11*y0 + h12;
Mat z1=h20*x0 + h21*y0 + h22;
x1=x1.mul(1/z1);
y1=y1.mul(1/z1);
Mat u1 = _f*x1 + _cx;
Mat v1 = _f*y1 + _cy;
Mat rwarp, gwarp, bwarp, gxwarp, gywarp;
remap(rimg[n], rwarp, u1, v1, INTER_CUBIC); //INTER_LINEAR
remap(gimg[n], gwarp, u1, v1, INTER_CUBIC);
remap(bimg[n], bwarp, u1, v1, INTER_CUBIC);
remap(gximg[n], gxwarp, u1, v1, INTER_CUBIC);
remap(gyimg[n], gywarp, u1, v1, INTER_CUBIC);
//rwarp=min(max(rwarp,0.0),1.0);
//gwarp=min(max(gwarp,0.0),1.0);
//bwarp=min(max(bwarp,0.0),1.0);
rwarp.copyTo(rps[n]);
gwarp.copyTo(gps[n]);
bwarp.copyTo(bps[n]);
gxwarp.copyTo(gxps[n]);
gywarp.copyTo(gyps[n]);
}
Mat rmean=Mat::zeros(row,col,CV_32FC1);
Mat gmean=Mat::zeros(row,col,CV_32FC1);
Mat bmean=Mat::zeros(row,col,CV_32FC1);
Mat gxmean=Mat::zeros(row,col,CV_32FC1);
Mat gymean=Mat::zeros(row,col,CV_32FC1);
for(int n=0;n<num_image;n++) {
rmean=rmean+rps[n];
gmean=gmean+gps[n];
bmean=bmean+bps[n];
gxmean=gxmean+gxps[n];
gymean=gymean+gyps[n];
}
rmean=rmean/num_image;
gmean=gmean/num_image;
bmean=bmean/num_image;
gxmean=gxmean/num_image;
gymean=gymean/num_image;
Mat rvar=Mat::zeros(row,col,CV_32FC1);
Mat gvar=Mat::zeros(row,col,CV_32FC1);
Mat bvar=Mat::zeros(row,col,CV_32FC1);
Mat gxvar=Mat::zeros(row,col,CV_32FC1);
Mat gyvar=Mat::zeros(row,col,CV_32FC1);
for(int n=0;n<num_image;n++) {
Mat rdiff=rps[n]-rmean;
Mat gdiff=gps[n]-gmean;
Mat bdiff=bps[n]-bmean;
Mat gxdiff=gxps[n]-gxmean;
Mat gydiff=gyps[n]-gymean;
rvar=rvar+rdiff.mul(rdiff);
gvar=gvar+gdiff.mul(gdiff);
bvar=bvar+bdiff.mul(bdiff);
gxvar=gxvar+gxdiff.mul(gxdiff);
gyvar=gyvar+gydiff.mul(gydiff);
}
rvar=rvar/num_image;
gvar=gvar/num_image;
bvar=bvar/num_image;
gxvar=gxvar/num_image;
gyvar=gyvar/num_image;
rmean=rmean+1e-16; gmean=gmean+1e-16; bmean=bmean+1e-16;
Mat rgbcost=rvar + gvar + bvar;
Mat _confidence = Mat(row,col,CV_32F,confidence);
_confidence=1 - (rvar.mul(1/rmean) + gvar.mul(1/gmean) + bvar.mul(1/bmean));
Mat gradcost=gxvar + gyvar;
Mat _cost = Mat(row,col,CV_32F,cost);
_cost = rgbcost + lambda*gradcost;
filter2D(_cost,_cost,_cost.depth(),window);
for(int i=0;i<row*col;i++) {
if ( mincost[i]>cost[i] ) {
mincost[i]=cost[i];
mincostlabel[i]=l;
minconfidence[i]=confidence[i];
}
}
}
depthmapWTA=Mat(row,col,CV_8UC1);
for(int i=0;i<row;i++) {
for(int j=0;j<col;j++) {
depthmapWTA.at<unsigned char>(i,j)=(unsigned char)(255*mincostlabel[i*col+j]/float(num_label-1));
}
}
Mat white=Mat::ones(image_height,image_width,CV_32F);
Mat white_undist;
remap(white, white_undist, ud_mapx, ud_mapy, CV_INTER_CUBIC);
Mat _white_undist;
resize(white_undist, _white_undist, Size(), scale, scale);
bool *mask=new bool[row*col];
int cnt_valid=0;
for(int i=0;i<row;i++) {
for(int j=0;j<col;j++) {
if(_white_undist.at<float>(i,j)>0.01) {
mask[i*col+j]=true;
cnt_valid++;
}
}
}
Mat _minconfidence=Mat(row,col,CV_32F,minconfidence);
confidencemap=_minconfidence.clone();
// statistical filtering
_minconfidence=Mat(1,row*col,CV_32F,minconfidence);
cv::sort(_minconfidence, _minconfidence, SORT_ASCENDING);
float thresh=minconfidence[row*col-int(cnt_valid*0.90)]; // 10 percent
// or fixed threshold
//float thresh=0.99; // 5 percent
cout<< "confidence threshold: "<<thresh << endl;
double scalar=255.0/(num_label-1);
double **disparity=new double*[row];
//double **disparity_gt=new double*[row];
depthmapFiltered=depthmapWTA.clone();
for(int i=0;i<row;i++) {
disparity[i]=new double[col];
//disparity_gt[i]=new double[col];
for(int j=0;j<col;j++) {
if(mask[i*col+j]==false||confidencemap.at<float>(i,j)<thresh) {
depthmapFiltered.at<unsigned char>(i,j)=(unsigned char)0;
}
//disparity_gt[i][j]=double(depthmapFiltered.at<unsigned char>(i,j));
disparity[i][j]=(double)(depthmapFiltered.at<unsigned char>(i,j))/scalar;
if(disparity[i][j]<=2)
{
disparity[i][j]=0;
}
}
}
// Refinement: Qingxiong Yang's method, A Non-Local Cost Aggregation Method for Stereo Matching, CVPR 2012
qx_tree_upsampling m_tree_upsampling;//upsampling class
m_tree_upsampling.init(row,col,num_label-1,sigma);
Mat img0_undist;
remap(images[0], img0_undist, ud_mapx, ud_mapy, CV_INTER_CUBIC);
unsigned char ***guidance_img_=new unsigned char**[1];
guidance_img_[0]=new unsigned char*[1];
guidance_img_[0][0]=new unsigned char[row*col*3];
Mat guidance_img=Mat(row,col,CV_8UC3,guidance_img_[0][0]);
resize(img0_undist,guidance_img,Size(),scale,scale);
imshow("guidance_img",guidance_img);
waitKey(1);
m_tree_upsampling.build_minimum_spanning_tree(guidance_img_);
m_tree_upsampling.disparity_upsampling(disparity);
depthmapRefined=depthmapFiltered.clone();
for(int i=0;i<row;i++) {
for(int j=0;j<col;j++) {
depthmapRefined.at<unsigned char>(i,j)=(unsigned char)(disparity[i][j]*scalar+0.5);
}
}
}
void DfUSMC::SaveDepthmapWTA(char *fullpath, bool bwdmapping) {
Mat temp;
if(bwdmapping) remap(depthmapWTA, temp, du_mapx, du_mapy, CV_INTER_CUBIC);
else temp=depthmapWTA;
imwrite(fullpath, temp);
imshow("depthmapWTA",temp);
waitKey(1);
}
void DfUSMC::SaveDepthmapFiltered(char *fullpath, bool bwdmapping) {
Mat temp;
if(bwdmapping) remap(depthmapFiltered, temp, du_mapx, du_mapy, CV_INTER_CUBIC);
else temp=depthmapFiltered;
imwrite(fullpath, temp);
imshow("depthmapFiltered",temp);
waitKey(1);
}
void DfUSMC::SaveDepthmapRefined(char *fullpath, bool bwdmapping) {
Mat temp;
if(bwdmapping) remap(depthmapRefined, temp, du_mapx, du_mapy, CV_INTER_CUBIC);
else temp=depthmapRefined;
imwrite(fullpath, temp);
imshow("depthmapRefined",temp);
waitKey(1);
}