-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSNA_twitter.py
470 lines (269 loc) · 11.9 KB
/
SNA_twitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python
# coding: utf-8
# # Social Network Analysis on BTS Fandom in Python
# In[1]:
import tweepy
import json
import pandas as pd
from pandas.io.json import json_normalize
import time
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import os, sys, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from ipynb.fs.full.Credentials import *
# ## Data Collection
# In[2]:
consumer_key = Twitter_API_KEY
consumer_secret = Twitter_API_SECRET
access_token = Twitter_ACCESS_TOKEN
access_token_secret = Twitter_ACCESS_SECRET
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth, wait_on_rate_limit = True)
# In[3]:
def jsonify_tweepy(tweepy_object):
json_str = json.dumps(tweepy_object._json)
return json.loads(json_str)
# In[4]:
def getFollowers_toDF (followers, item_no_t2):
followers_all = []
for follower in followers:
try:
users = api.get_user(screen_name = follower)
follower_ID = users.id_str
print("The ID of the user " + follower + " is : " + follower_ID)
followers_obj = tweepy.Cursor(api.followers, screen_name = follower, count = 200).items(item_no_t2)
time.sleep(60)
#Call the function and unload each _json into follower_list
followers_list = [jsonify_tweepy(follower_obj) for follower_obj in followers_obj]
#Convert followers_list to a pandas dataframe
followers_df = json_normalize(followers_list)
if len(followers_df) > 0:
followers_df_filtered = followers_df[['screen_name']][followers_df['id_str'].notnull() &
(followers_df['friends_count'] <= 50) &
(1 <= followers_df['friends_count']) &
(followers_df['followers_count'] >= 100)]
followers_df_filtered['Users'] = follower
followers_df_filtered.rename(columns={'screen_name':'Followers'}, inplace=True)
followers_all.append(followers_df_filtered)
except tweepy.error.TweepError:
continue
followers_all = pd.concat(followers_all, axis = 0, ignore_index = True, sort = False)
return followers_all
# In[11]:
def getFriends_toDF (followers, item_no_t2):
friends_all = []
for follower in followers:
try:
user = api.get_user(screen_name = follower)
user_ID = user.id_str
print("The ID of the user " + follower + " is : " + user_ID)
friends_obj = tweepy.Cursor(api.friends, screen_name = follower, count = 200).items(item_no_t2)
time.sleep(60)
#Call the function and unload each _json into follower_list
friends_list = [jsonify_tweepy(friend_obj) for friend_obj in friends_obj]
#Convert followers_list to a pandas dataframe
friends_df = json_normalize(friends_list)
if len(friends_df) > 0:
friends_df_filtered = friends_df[['screen_name']][friends_df['id_str'].notnull() &
(friends_df['friends_count'] >= 1) &
(friends_df['friends_count'] <= 150) &
(friends_df['followers_count'] >= 100)]
friends_df_filtered['Followers'] = follower
friends_df_filtered.rename(columns={'screen_name':'Users'}, inplace=True)
friends_all.append(friends_df_filtered)
except tweepy.error.TweepError:
continue
friends_all = pd.concat(friends_all, axis = 0, ignore_index = True, sort = False)
friends_all = friends_all[['Followers', 'Users']]
return friends_all
# In[6]:
def getFriends_T0_toDF (followers):
friends_all = []
for follower in followers:
try:
user = api.get_user(screen_name = follower)
user_ID = user.id_str
print("The ID of the user " + follower + " is : " + user_ID)
friends_obj = tweepy.Cursor(api.friends, screen_name = follower, count = 200).items()
time.sleep(60)
#Call the function and unload each _json into follower_list
friends_list = [jsonify_tweepy(friend_obj) for friend_obj in friends_obj]
#Convert followers_list to a pandas dataframe
friends_df = json_normalize(friends_list)
if len(friends_df) > 0:
friends_df_filtered = friends_df[['screen_name']][friends_df['id_str'].notnull() &
(friends_df['friends_count'] >= 1)]
friends_df_filtered['Followers'] = follower
friends_df_filtered.rename(columns={'screen_name':'Users'}, inplace=True)
friends_all.append(friends_df_filtered)
except tweepy.error.TweepError:
continue
friends_all = pd.concat(friends_all, axis = 0, ignore_index = True, sort = False)
friends_all = friends_all[['Followers', 'Users']]
return friends_all
# In[7]:
screen_name = 'BTS_twt'
# In[16]:
T0_Fr1 = getFriends_T0_toDF([screen_name])
# In[17]:
T0_Fr1
# In[8]:
T1 = getFollowers_toDF([screen_name], 10000)
# In[9]:
T1
# In[12]:
T1_Fr1 = getFriends_toDF(list(T1['Followers']), 50)
# In[13]:
T1_Fr1
# In[14]:
len(list(T1_Fr1['Users'].unique()))
# In[ ]:
T1_Fr2 = getFriends_toDF(list(T1_Fr1['Users'].unique()), 50)
# In[ ]:
T1_Fr2
# In[ ]:
list(T1_Fr1['Users'].unique())
# In[18]:
T2 = getFollowers_toDF(list(T1['Followers']), 1000)
# In[19]:
T2
# In[20]:
T2_Fr1 = getFriends_toDF(list(T2['Followers'].unique()), 50)
# In[21]:
T2_Fr1
# In[ ]:
T2_Fr2 = getFriends_toDF(list(T2_Fr1['Users'].unique()), 50)
# In[ ]:
T2_Fr2
# In[22]:
DF = pd.concat([T0_Fr1, T1, T1_Fr1, T2, T2_Fr1]).drop_duplicates().reset_index(drop=True)
# In[23]:
DF
# ## Exploratory Data Analysis
# In[24]:
print(DF['Followers'].value_counts())
# In[ ]:
print(dict(DF['Followers'].value_counts()))
# In[25]:
print(DF['Users'].value_counts())
# In[ ]:
print(dict(DF['Users'].value_counts()))
# ## Data Visualization
# In[46]:
graph = nx.from_pandas_edgelist(DF, 'Followers', 'Users',
edge_attr = None, create_using = nx.DiGraph())
# In[47]:
print(nx.info(graph))
# In[48]:
'{:.15f}'.format(nx.average_clustering(graph))
# In[149]:
dict(sorted(nx.in_degree_centrality(graph).items(), key=lambda item: item[1], reverse=True))
# In[59]:
dict(sorted(nx.eigenvector_centrality(graph).items(), key=lambda item: item[1], reverse=True))
# In[56]:
dict(filter(lambda value: value[1] > 0, dict(sorted(nx.betweenness_centrality(graph,
normalized = True,
endpoints = True).items(), key=lambda item: item[1],
reverse=True)).items()))
# In[147]:
plt.figure(figsize =(20, 20))
layout = nx.spring_layout(graph,
k = 0.7)
nx.draw_networkx_edges(graph,
layout,
edge_color = '#AAAAAA')
uni_dots = [node for node in graph.nodes()
if node in np.unique(DF[['Users', 'Followers']].values)]
nx.draw_networkx_nodes(graph,
layout,
nodelist = uni_dots,
node_size = 30,
node_color = '#AAAAAA')
eig_dict = dict(filter(lambda value: value[1] > 0.03,
dict(sorted(nx.eigenvector_centrality(graph).items(),
key=lambda item: item[1],
reverse=True)).items()))
inde_dict = dict(filter(lambda value: value[1] > 0.005,
dict(sorted(nx.in_degree_centrality(graph).items(),
key=lambda item: item[1],
reverse=True)).items()))
btn_dict = dict(filter(lambda value: value[1] > 0.0005,
dict(sorted(nx.betweenness_centrality(graph,
normalized = True,
endpoints = True).items(),
key=lambda item: item[1],
reverse=True)).items()))
intersection = [node for node in graph.nodes()
if node in eig_dict.keys()
if node in inde_dict.keys()
if node in btn_dict.keys()]
size_intersection = [value * 1000000 for (node, value) in nx.in_degree_centrality(graph).items()
if node in intersection]
nx.draw_networkx_nodes(graph,
layout,
nodelist = intersection,
node_size = size_intersection,
node_color = 'purple',
alpha = 0.3)
nx.draw_networkx_labels(graph,
layout,
labels = dict(zip(list(intersection), list(intersection))),
font_size = 16)
inde_btn = [node for node in graph.nodes()
if node not in eig_dict.keys()
if node in inde_dict.keys()
if node in btn_dict.keys()]
size_inde_btn = [value * 1000000 for (node, value) in nx.in_degree_centrality(graph).items()
if node in inde_btn]
nx.draw_networkx_nodes(graph,
layout,
nodelist = inde_btn,
node_size = size_inde_btn,
node_color = 'aqua',
alpha = 0.3)
nx.draw_networkx_labels(graph,
layout,
labels = dict(zip(list(inde_btn), list(inde_btn))),
font_size = 16)
eig_inde = [node for node in graph.nodes()
if node in eig_dict.keys()
if node in inde_dict.keys()
if node not in btn_dict.keys()]
size_eig_inde = [value * 1000000 for (node, value) in nx.in_degree_centrality(graph).items()
if node in eig_inde]
nx.draw_networkx_nodes(graph,
layout,
nodelist = eig_inde,
node_size = size_eig_inde,
node_color = 'yellow',
alpha = 0.3)
nx.draw_networkx_labels(graph,
layout,
labels = dict(zip(list(eig_inde), list(eig_inde))),
font_size = 16)
eig_btn = [node for node in graph.nodes()
if node in eig_dict.keys()
if node not in inde_dict.keys()
if node in btn_dict.keys()]
size_eig_btn = [value * 1000000 for (node, value) in nx.in_degree_centrality(graph).items()
if node in eig_btn]
nx.draw_networkx_nodes(graph,
layout,
nodelist = eig_btn,
node_size = size_eig_btn,
node_color = 'orange',
alpha = 0.4)
nx.draw_networkx_labels(graph,
layout,
labels = dict(zip(list(eig_btn), list(eig_btn))),
font_size = 16)
plt.axis('off')
plt.title("The Popular Accounts in BTS Fandom")
#based on eigenvector_centrality, in-degree centrality & betweenness centrality
plt.show()