-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmatte_anything.py
421 lines (352 loc) · 17.3 KB
/
matte_anything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
from torchvision.ops import box_convert
from detectron2.config import LazyConfig, instantiate
from detectron2.checkpoint import DetectionCheckpointer
from segment_anything import sam_model_registry, SamPredictor
import groundingdino.datasets.transforms as T
from groundingdino.util.inference import load_model as dino_load_model, predict as dino_predict, annotate as dino_annotate
models = {
'vit_h': './pretrained/sam_vit_h_4b8939.pth',
'vit_b': './pretrained/sam_vit_b_01ec64.pth'
}
vitmatte_models = {
'vit_b': './pretrained/ViTMatte_B_DIS.pth',
}
vitmatte_config = {
'vit_b': './configs/matte_anything.py',
}
grounding_dino = {
'config': './GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
'weight': './pretrained/groundingdino_swint_ogc.pth'
}
def generate_checkerboard_image(height, width, num_squares):
num_squares_h = num_squares
square_size_h = height // num_squares_h
square_size_w = square_size_h
num_squares_w = width // square_size_w
new_height = num_squares_h * square_size_h
new_width = num_squares_w * square_size_w
image = np.zeros((new_height, new_width), dtype=np.uint8)
for i in range(num_squares_h):
for j in range(num_squares_w):
start_x = j * square_size_w
start_y = i * square_size_h
color = 255 if (i + j) % 2 == 0 else 200
image[start_y:start_y + square_size_h, start_x:start_x + square_size_w] = color
image = cv2.resize(image, (width, height))
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
return image
def init_segment_anything(model_type):
"""
Initialize the segmenting anything with model_type in ['vit_b', 'vit_l', 'vit_h']
"""
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
predictor = SamPredictor(sam)
return predictor
def init_vitmatte(model_type):
"""
Initialize the vitmatte with model_type in ['vit_s', 'vit_b']
"""
cfg = LazyConfig.load(vitmatte_config[model_type])
vitmatte = instantiate(cfg.model)
vitmatte.to(device)
vitmatte.eval()
DetectionCheckpointer(vitmatte).load(vitmatte_models[model_type])
return vitmatte
def generate_trimap(mask, erode_kernel_size=10, dilate_kernel_size=10):
erode_kernel = np.ones((erode_kernel_size, erode_kernel_size), np.uint8)
dilate_kernel = np.ones((dilate_kernel_size, dilate_kernel_size), np.uint8)
eroded = cv2.erode(mask, erode_kernel, iterations=5)
dilated = cv2.dilate(mask, dilate_kernel, iterations=5)
trimap = np.zeros_like(mask)
trimap[dilated==255] = 128
trimap[eroded==255] = 255
return trimap
# user click the image to get points, and show the points on the image
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
if point_type == 'foreground_point':
sel_pix.append((evt.index, 1)) # append the foreground_point
elif point_type == 'background_point':
sel_pix.append((evt.index, 0)) # append the background_point
else:
sel_pix.append((evt.index, 1)) # default foreground_point
# draw points
for point, label in sel_pix:
cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img if isinstance(img, np.ndarray) else np.array(img)
# undo the selected point
def undo_points(orig_img, sel_pix):
temp = orig_img.copy()
# draw points
if len(sel_pix) != 0:
sel_pix.pop()
for point, label in sel_pix:
cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
# undo all selected points
def undo_all_points(orig_img, sel_pix):
if orig_img is None:
raise gr.Error("Please upload pictures first!")
else:
temp = orig_img.copy()
while len(sel_pix) != 0:
sel_pix.pop()
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
# clear the fg_caption
def clear_fg_caption(fg_caption):
fg_caption = ""
return fg_caption
# once user upload an image, the original image is stored in `original_image`
def store_img(img):
return img, [] # when new image is uploaded, `selected_points` should be empty
def convert_pixels(gray_image, boxes):
converted_image = np.copy(gray_image)
for box in boxes:
x1, y1, x2, y2 = box
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
converted_image[y1:y2, x1:x2][converted_image[y1:y2, x1:x2] == 1] = 0.5
return converted_image
if __name__ == "__main__":
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
sam_model = 'vit_h'
vitmatte_model = 'vit_b'
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
print('Initializing models... Please wait...')
predictor = init_segment_anything(sam_model)
vitmatte = init_vitmatte(vitmatte_model)
grounding_dino = dino_load_model(grounding_dino['config'], grounding_dino['weight'])
def run_inference(input_x, selected_points, erode_kernel_size, dilate_kernel_size, fg_box_threshold, fg_text_threshold, fg_caption,
tr_box_threshold, tr_text_threshold, save_name, tr_caption = "glass, lens, crystal, diamond, bubble, bulb, web, grid"):
predictor.set_image(input_x)
dino_transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_transformed, _ = dino_transform(Image.fromarray(input_x), None)
if len(selected_points) != 0:
points = torch.Tensor([p for p, _ in selected_points]).to(device).unsqueeze(1)
labels = torch.Tensor([int(l) for _, l in selected_points]).to(device).unsqueeze(1)
transformed_points = predictor.transform.apply_coords_torch(points, input_x.shape[:2])
print(points.size(), transformed_points.size(), labels.size(), input_x.shape, points)
point_coords=transformed_points.permute(1, 0, 2)
point_labels=labels.permute(1, 0)
else:
transformed_points, labels = None, None
point_coords, point_labels = None, None
if fg_caption is not None and fg_caption != "": # This section has benefited from the contributions of neuromorph,thanks!
fg_boxes, logits, phrases = dino_predict(
model=grounding_dino,
image=image_transformed,
caption=fg_caption,
box_threshold=fg_box_threshold,
text_threshold=fg_text_threshold,
device=device)
print(logits, phrases)
if fg_boxes.shape[0] == 0:
# no fg object detected
transformed_boxes = None
else:
h, w, _ = input_x.shape
fg_boxes = torch.Tensor(fg_boxes).to(device)
fg_boxes = fg_boxes * torch.Tensor([w, h, w, h]).to(device)
fg_boxes = box_convert(boxes=fg_boxes, in_fmt="cxcywh", out_fmt="xyxy")
transformed_boxes = predictor.transform.apply_boxes_torch(fg_boxes, input_x.shape[:2])
else:
transformed_boxes = None
# predict segmentation according to the boxes
masks, scores, logits = predictor.predict_torch(
point_coords = point_coords,
point_labels = point_labels,
boxes = transformed_boxes,
multimask_output = False,
)
masks = masks.cpu().detach().numpy()
mask_all = np.ones((input_x.shape[0], input_x.shape[1], 3))
for ann in masks:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[ann[0] == True, i] = color_mask[i]
img = input_x / 255 * 0.3 + mask_all * 0.7
# generate alpha matte
torch.cuda.empty_cache()
mask = masks[0][0].astype(np.uint8)*255
trimap = generate_trimap(mask, erode_kernel_size, dilate_kernel_size).astype(np.float32)
trimap[trimap==128] = 0.5
trimap[trimap==255] = 1
boxes, logits, phrases = dino_predict(
model=grounding_dino,
image=image_transformed,
caption= tr_caption,
box_threshold=tr_box_threshold,
text_threshold=tr_text_threshold,
device=device)
annotated_frame = dino_annotate(image_source=input_x, boxes=boxes, logits=logits, phrases=phrases)
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
if boxes.shape[0] == 0:
# no transparent object detected
pass
else:
h, w, _ = input_x.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
trimap = convert_pixels(trimap, xyxy)
input = {
"image": torch.from_numpy(input_x).permute(2, 0, 1).unsqueeze(0)/255,
"trimap": torch.from_numpy(trimap).unsqueeze(0).unsqueeze(0),
}
torch.cuda.empty_cache()
alpha = vitmatte(input)['phas'].flatten(0,2)
alpha = alpha.detach().cpu().numpy()
# get a green background
background = generate_checkerboard_image(input_x.shape[0], input_x.shape[1], 8)
# calculate foreground with alpha blending
foreground_alpha = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
# calculate foreground with mask
foreground_mask = input_x * np.expand_dims(mask/255, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(mask/255, axis=2).repeat(3,2))/255
# concatenate input_x and foreground_alpha
cv2_alpha = (np.expand_dims(alpha, axis=2)*255).astype(np.uint8)
cv2_input_x = cv2.cvtColor(input_x, cv2.COLOR_BGR2RGB)
rgba = np.concatenate((cv2_input_x, cv2_alpha), axis=2)
cv2.imwrite(f'your_demos/{save_name}.png', rgba)
foreground_alpha[foreground_alpha>1] = 1
foreground_mask[foreground_mask>1] = 1
# return img, mask_all
trimap[trimap==1] == 0.999
# new background
background_1 = cv2.imread('figs/sea.jpg')
background_2 = cv2.imread('figs/forest.jpg')
background_3 = cv2.imread('figs/sunny.jpg')
background_1 = cv2.resize(background_1, (input_x.shape[1], input_x.shape[0]))
background_2 = cv2.resize(background_2, (input_x.shape[1], input_x.shape[0]))
background_3 = cv2.resize(background_3, (input_x.shape[1], input_x.shape[0]))
# to RGB
background_1 = cv2.cvtColor(background_1, cv2.COLOR_BGR2RGB)
background_2 = cv2.cvtColor(background_2, cv2.COLOR_BGR2RGB)
background_3 = cv2.cvtColor(background_3, cv2.COLOR_BGR2RGB)
# use alpha blending
new_bg_1 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_1 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_2 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_2 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_3 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_3 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
return mask, alpha, foreground_mask, foreground_alpha, new_bg_1, new_bg_2, new_bg_3
with gr.Blocks() as demo:
gr.Markdown(
"""
# <center>Matte Anything🐒 !
"""
)
with gr.Row().style(equal_height=True):
with gr.Column():
# input image
original_image = gr.State(value="numpy") # store original image without points, default None
input_image = gr.Image(type="numpy", label="Input Image")
# prompt (point or text)
# Point Input
with gr.Tab(label='Point Input') as Tab1:
with gr.Column():
selected_points = gr.State([]) # store points
radio = gr.Radio(['foreground_point', 'background_point'], label='Point Labels')
with gr.Row():
undo_button = gr.Button('Remove Point')
undo_all_button = gr.Button('Remove All Points')
# Foreground Text Input
with gr.Tab(label='Foreground Text Input') as Tab2:
with gr.Box():
gr.Markdown("Foreground Text Input")
fg_caption = gr.inputs.Textbox(lines=1, default="", label="foreground input text")
# Save Config
with gr.Tab(label='Save Config') as Tab3:
with gr.Box():
gr.Markdown("save name")
save_dir = gr.inputs.Textbox(lines=1, default="", label="Give a name of your demo. It will be saved in ```your_demos/your_name.pny```")
# run button
button = gr.Button("Start!")
# Trimap Settings
with gr.Tab(label='Trimap Settings'):
gr.Markdown("Trimap Settings")
erode_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="erode_kernel_size")
dilate_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="dilate_kernel_size")
# Input Text Settings
with gr.Tab(label='Input Text Settings'):
gr.Markdown("Input Text Settings")
fg_box_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.001, default=0.25, label="foreground_box_threshold")
fg_text_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.001, default=0.25, label="foreground_text_threshold")
# Transparency Settings
with gr.Tab(label='Transparency Settings'):
gr.Markdown("Transparency Settings")
tr_caption = gr.inputs.Textbox(lines=1, default="glass.lens.crystal.diamond.bubble.bulb.web.grid", label="transparency input text")
tr_box_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.005, default=0.5, label="transparency_box_threshold")
tr_text_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.005, default=0.25, label="transparency_text_threshold")
with gr.Column():
# show the image with mask
with gr.Tab(label='SAM Mask'):
mask = gr.Image(type='numpy')
# with gr.Tab(label='Trimap'):
# trimap = gr.Image(type='numpy')
with gr.Tab(label='Alpha Matte'):
alpha = gr.Image(type='numpy')
# show only mask
with gr.Tab(label='Foreground by SAM Mask'):
foreground_by_sam_mask = gr.Image(type='numpy')
with gr.Tab(label='Refined by ViTMatte'):
refined_by_vitmatte = gr.Image(type='numpy')
# with gr.Tab(label='Transparency Detection'):
# transparency = gr.Image(type='numpy')
with gr.Tab(label='New Background 1'):
new_bg_1 = gr.Image(type='numpy')
with gr.Tab(label='New Background 2'):
new_bg_2 = gr.Image(type='numpy')
with gr.Tab(label='New Background 3'):
new_bg_3 = gr.Image(type='numpy')
input_image.upload(
store_img,
[input_image],
[original_image, selected_points]
)
input_image.select(
get_point,
[input_image, selected_points, radio],
[input_image],
)
undo_button.click(
undo_points,
[original_image, selected_points],
[input_image]
)
undo_all_button.click(
undo_all_points,
[original_image, selected_points],
[input_image]
)
Tab1.select(
clear_fg_caption,
[fg_caption],
[fg_caption]
)
Tab2.select(
undo_all_points,
[original_image, selected_points],
[input_image]
)
button.click(run_inference, inputs=[original_image, selected_points, erode_kernel_size, dilate_kernel_size, fg_box_threshold, fg_text_threshold, fg_caption, tr_box_threshold, tr_text_threshold, \
save_dir, tr_caption], outputs=[mask, alpha, foreground_by_sam_mask, refined_by_vitmatte, new_bg_1, new_bg_2, new_bg_3])
with gr.Row():
with gr.Column():
background_image = gr.State(value=None)
demo.launch()