-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
253 lines (219 loc) · 8.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from tqdm import tqdm
import cv2
import argparse
from model import MyModel
from regionProposal import search
from dataset import TrainDataset, PredictDataset
from utils import *
def get_VOCData(path, year):
download = False
train = datasets.VOCDetection(root=path, year=year, image_set='train', download=download)
val = datasets.VOCDetection(root=path, year=year, image_set='val', download=download)
trainval = datasets.VOCDetection(root=path, year=year, image_set='trainval', download=download)
test = datasets.VOCDetection(root=path, year=year, image_set='test', download=download)
return {'train': train, 'val': val, 'trainval': trainval, 'test': test}
def train_net(model, train_data, roi_dir, model_dir, load_model=False):
model_path = os.path.join(model_dir, 'cnn_model.pth')
if os.path.exists(model_path) and load_model:
print('load model : cnn_model.pth')
return None
# Hyper Parameters
# related by https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/solver.prototxt
fine_tuning_lr = 0.001
max_iter = 450000
gamma = 0.1
step_size = 100000
momentum = 0.9
weight_decay = 0.0005
snapshot = 10000
dataset = TrainDataset(train_data, roi_dir, train_mode='net')
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.net.parameters(), lr=fine_tuning_lr, momentum=momentum, weight_decay=weight_decay)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
itr = 0
laps = max_iter // len(loader)
model.net.train()
for _ in tqdm(range(laps), total=laps, desc='training net'):
for _, (batch, label) in tqdm(enumerate(loader), total=len(loader), leave=False, desc='train batch'):
for param in model.net.parameters():
param.grad = None
batch = batch.to(model.DEVICE)
label = label.to(model.DEVICE).float()
outputs = model.net(batch)
loss = criterion(outputs, label)
loss.backward()
optimizer.step()
scheduler.step()
itr += 1
if itr % snapshot == 0 and itr:
checkpoint_path = 'cnn_model_' + str(itr) + '.pth'
torch.save(model.net.state_dict(), checkpoint_path)
model.save_model(model_path)
def train_svm(model, train_data, roi_dir, model_dir, load_model=False):
if os.path.exists(os.path.join(model_dir, 'SVMs')):
if os.path.exists(os.path.join(model_dir, 'SVMs', 'linear_19.xml')) and load_model:
print('load model : SVM_*.xml')
return None
else:
os.mkdir(os.path.join(model_dir, 'SVMs'))
kernels = ['linear', 'histogram']
model.eval()
for label_idx in tqdm(range(20), desc='training svm per class'):
dataset = TrainDataset(train_data, roi_dir, train_mode='svm', label_idx=label_idx)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
net_output = np.zeros((len(dataset), 4096), np.float32)
net_label = np.zeros(len(dataset), np.int32)
with torch.inference_mode():
for i, (batch, label) in tqdm(enumerate(loader), total=len(loader), leave=False, desc='predict feature vec for training svm'):
batch = batch.to(model.DEVICE).float()
outputs = model.net(batch)
outputs = outputs.cpu().detach().numpy()
net_output[i*BATCH_SIZE: i*BATCH_SIZE + len(outputs)] = outputs # for memory efficiency
label = label.numpy()
net_label[i*BATCH_SIZE: i*BATCH_SIZE + len(label)] = label
for kernel in tqdm(kernels, total=len(kernels), leave=False, desc='training SVMs'):
clf = cv2.ml.SVM_create()
clf.setType(cv2.ml.SVM_C_SVC)
if kernel == 'linear':
clf.setKernel(cv2.ml.SVM_LINEAR)
elif kernel == 'histogram':
clf.setKernel(cv2.ml.SVM_INTER)
clf.setGamma(1)
clf.setC(1)
clf.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER + cv2.TermCriteria_EPS, 100, 1e-6))
clf.train(net_output, cv2.ml.ROW_SAMPLE, net_label)
svm_path = os.path.join(model_dir, 'SVMs', kernel + '_' + str(label_idx) + '.xml')
clf.save(svm_path)
del clf
def predict(model, test_data, roi_dir, model_dir, detection_dir):
clf_list = {'linear': list(), 'histogram': list()}
for i in range(20):
for kernel in clf_list.keys():
svm_path = os.path.join(model_dir, 'SVMs', kernel + '_' + str(i) + '.xml')
clf_list[kernel].append(cv2.ml.SVM_load(svm_path))
model.eval()
for i, imgdata in tqdm(enumerate(test_data), total=len(test_data), desc='predict test per image'):
net_output = list()
net_label = list()
dataset = PredictDataset(imgdata, roi_dir)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
with torch.inference_mode():
for _, (batch, label) in tqdm(enumerate(loader), total=len(loader), leave=False, desc='predict feature vec'):
batch = batch.to(model.DEVICE).float()
outputs = model.net(batch)
outputs = outputs.cpu().detach().numpy()
net_output.append(outputs)
net_label.append(label)
net_output = np.concatenate(net_output) # (N, 4096)
net_label = np.concatenate(net_label) # (N, 4)
for kernel in clf_list.keys():
predict_score = np.zeros((20, len(net_output)), dtype=np.float32)
check_predict_score = np.zeros((20, len(net_output)), dtype=bool)
for label_idx in tqdm(range(20), leave=False, desc='predict class'):
clf = clf_list[kernel][label_idx]
svm_output = clf.predict(net_output)[1].ravel()
check_svm_output = svm_output == 1
check_predict_score[label_idx] = check_svm_output
svm_predict_idx = np.where(check_svm_output)[0]
if not svm_predict_idx.size:
continue
ret, alpha, svidx = clf.getDecisionFunction(0)
support_vectors = clf.getSupportVectors()
w = support_vectors[svidx[0]] # (i(num_of_SV), 4096)
b = ret
if kernel == 'linear':
predict_score[label_idx, svm_predict_idx] = np.einsum('ik,dk->d', w, net_output[svm_predict_idx]) - b
elif kernel == 'histogram':
K = np.array([np.minimum(w, net_output[p_idx]) for p_idx in svm_predict_idx], dtype=np.float32) # Histogram intersection kernel
predict_score[label_idx, svm_predict_idx] = np.einsum('ij,djk->d', alpha, K) - b
if (svm_output[svm_predict_idx[0]] == 1 and predict_score[label_idx][svm_predict_idx[0]] < 0) or (svm_output[svm_predict_idx[0]] == 0 and predict_score[label_idx][svm_predict_idx[0]] > 0):
predict_score[label_idx] *= -1
check_detect_object = check_predict_score.any(axis=0)
check_score = predict_score[:, check_detect_object]
suppression = nms(net_label[check_detect_object], check_score)
detection_list = list()
for target_id, label, score in suppression:
target = TARGET_LIST[target_id]
predict_data_info = target + ' ' + str(score) + ' ' + ' '.join(list(map(str, label)))
detection_list.append(predict_data_info)
make_dir(os.path.join(detection_dir, kernel))
img_number = imgdata[1]['annotation']['filename'].split('.')[0]
out_txt_file_path = os.path.join(detection_dir, kernel, img_number + '.txt')
with open(out_txt_file_path, mode="w") as f:
f.write("\n".join(detection_list))
def main(args):
SEED = 39
seed_everything(SEED)
generator = torch.Generator()
generator.manual_seed(SEED)
data_dir = args.datadir
roi_dir = args.roidir
detection_dir = args.detectiondir
model_dir = args.modeldir
for dir_path in [data_dir, roi_dir, detection_dir, model_dir]:
make_dir(dir_path)
load_model = args.load_model
global NUM_WORKERS
NUM_WORKERS = args.num_workers
load_roi = args.load_roi
data = get_VOCData(data_dir, args.voc)
train_data = data['trainval']
test_data = data['test']
if not load_roi:
search(train_data, roi_dir) # 5011
search(test_data, roi_dir) # 4952
model = MyModel(model_dir)
train_net(model, train_data, roi_dir, model_dir, load_model)
train_svm(model, train_data, roi_dir, model_dir, load_model)
predict(model, test_data, roi_dir, model_dir, detection_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser("RCNN: VOC2007 data only")
parser.add_argument(
'--num_workers',
type=int,
default=0,
)
# Test data is valid only for 2007
parser.add_argument(
'--voc',
type=str,
default='2007',
choices=[
'2007',
],
)
parser.add_argument(
'--datadir',
type=str,
default='./data',
)
parser.add_argument(
'--roidir',
type=str,
default='./ROI',
)
parser.add_argument(
'--detectiondir',
type=str,
default='./detection',
)
parser.add_argument(
'--modeldir',
type=str,
default='./model_param',
)
parser.add_argument(
'--load_model',
action='store_true',
)
parser.add_argument(
'--load_roi',
action='store_true',
)
args = parser.parse_args()
main(args)