-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
114 lines (93 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import tensorflow as tf
from model_aon import inference, get_train_op, get_init_op
from input_data import get_batch_data
import os
import numpy as np
flags = tf.app.flags
flags.DEFINE_string('exp_dir', 'exp_log', 'experiment model save directory')
flags.DEFINE_integer('batch_size', 32, 'define train batch size')
flags.DEFINE_integer('max_steps', 2000000, 'step nums for training')
flags.DEFINE_boolean('restore', True, 'restore model parameter from checkpoint file')
flags.DEFINE_string('tfrecord_file_path', '/share/zhui/mnt/train.tfrecord', 'tfrecord file path')
flags.DEFINE_boolean('single_seq', False, 'Use FG or not')
FLAGS = flags.FLAGS
def main(unused_argv):
if FLAGS.exp_dir:
checkpoint_dir = os.path.join(FLAGS.exp_dir, 'model.ckpt')
train_log_write_dir = os.path.join(FLAGS.exp_dir, 'log/train')
global_step = tf.Variable(0, name='global_step', trainable=False)
with tf.name_scope('input'):
image_placeholder = tf.placeholder(shape=[None, 100, 100, 3], dtype=tf.float32)
groundtruth_text_placeholder = tf.placeholder(shape=[None,], dtype=tf.string)
tf.summary.image('input_image', image_placeholder, FLAGS.batch_size)
print('image_placeholder', image_placeholder)
print('groundtruth_placeholder', groundtruth_text_placeholder)
output_tensor_dict, eval_output_tensor_dict = inference(
image_placeholder, groundtruth_text_placeholder, FLAGS.single_seq)
loss_tensor = output_tensor_dict['loss']
output_labels_tensor = output_tensor_dict['labels']
output_predict_text_tensor = output_tensor_dict['predict_text']
print('output_predict_text_tensor', output_predict_text_tensor)
probabilities_tensor = output_tensor_dict['probabilities']
output_eval_text_tensor = eval_output_tensor_dict['predict_text'] # For EVAL
print('output_eval_text_tensor', output_eval_text_tensor)
train_op = get_train_op(loss_tensor, global_step)
batch_tensor_dict = get_batch_data(FLAGS.tfrecord_file_path, mode='train', batch_size=FLAGS.batch_size)
decoder_inputs_tensor = tf.get_default_graph().get_tensor_by_name("attention_decoder/concat:0")
decoder_targets_tensor = tf.get_default_graph().get_tensor_by_name("attention_decoder/concat_1:0")
sess = tf.Session()
train_writer = tf.summary.FileWriter(train_log_write_dir, sess.graph)
summary_merge_tensor = tf.summary.merge_all()
sess.run(get_init_op())
total_loss = 0.0
begin_step = 0
saver = tf.train.Saver()
if os.path.exists(os.path.join(FLAGS.exp_dir, 'checkpoint')) and FLAGS.restore:
save_path = tf.train.latest_checkpoint(FLAGS.exp_dir)
saver.restore(sess, save_path=save_path)
begin_step = sess.run(global_step)
print('Restore model from {} successful, continue training from step {}'.format(save_path, begin_step))
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
try:
for step in range(begin_step, FLAGS.max_steps):
if coord.should_stop():
break
batch_dict = sess.run(batch_tensor_dict)
images = batch_dict['images']
groundtruth_text = np.char.lower(batch_dict['groundtruth_text'].astype('str'))
feed_dict = {image_placeholder: images, groundtruth_text_placeholder: groundtruth_text}
_, loss = sess.run([train_op, loss_tensor], feed_dict=feed_dict)
total_loss += loss
if step % 100 == 0:
summary, output_labels, output_predict_text, decoder_inputs, decoder_targets= sess.run(
[summary_merge_tensor, output_labels_tensor, output_predict_text_tensor, decoder_inputs_tensor, decoder_targets_tensor],
feed_dict=feed_dict
)
probabilities = sess.run(probabilities_tensor, feed_dict)
eval_text = sess.run(output_eval_text_tensor, feed_dict={image_placeholder: images})
train_writer.add_summary(summary, step)
print('Step {}, loss {}'.format(step, total_loss / 100))
print('out_labels\n', output_labels[:5])
print('predict_text\n', output_predict_text[:5])
print('probabilities\n', probabilities[:5])
print('groundtruth_text\n', groundtruth_text[:5])
print('decoder_inputs\n', decoder_inputs[:5])
print('decoder_targets\n', decoder_targets[:5])
print('eval_text\n', eval_text[:5])
sample_image = images[:1]
print('Use a sample: ', sess.run(output_eval_text_tensor, feed_dict={image_placeholder: sample_image}))
print()
print()
total_loss = 0.0
if step % 1000 == 0:
saver.save(sess, save_path=checkpoint_dir, global_step=global_step)
print('Write checkpoint {}'.format(sess.run(global_step)))
except tf.errors.OutOfRangeError():
print('All finished')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
tf.app.run()