-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdemo.py
73 lines (57 loc) · 1.93 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import model_aon
import tensorflow as tf
import input_data
import numpy as np
def classfier(images):
x = model_aon.base_cnn(images)
x = model_aon._fc('classfier_fc', x, 10)
preds = tf.argmax(x, axis=1)
return {
'preds': preds,
'logits': x
}
def main():
batch_size = 32
images_placeholder = tf.placeholder(shape=[None, 100, 100, 3], dtype=tf.float32)
labels_placeholder = tf.placeholder(shape=[None], dtype=tf.int64)
output_tensor_dict = classfier(images_placeholder)
logits_tensor, preds_tensor = output_tensor_dict['logits'], output_tensor_dict['preds']
loss_tensor = tf.reduce_mean(
tf.losses.sparse_softmax_cross_entropy(
logits=logits_tensor,
labels=labels_placeholder,
)
)
train_op = tf.train.AdadeltaOptimizer().minimize(loss_tensor)
batch_tensor_dict = input_data.get_batch_data()
sess = tf.Session()
init_op = tf.group(
tf.global_variables_initializer(), tf.local_variables_initializer()
)
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
try:
for step in range(1, 100000):
if coord.should_stop():
break
batch_dict = sess.run(batch_tensor_dict)
feed_dict = {
images_placeholder: batch_dict['images'],
labels_placeholder: batch_dict['groundtruth_text'].astype(np.int64)
}
_, loss = sess.run([train_op, loss_tensor], feed_dict=feed_dict)
if step % 100 == 0:
print('step {} loss {}'.format(step, loss))
preds = sess.run(preds_tensor, feed_dict=feed_dict)
labels = batch_dict['groundtruth_text']
print('preds\n', preds[:10])
print('labels\n', labels[:10])
except tf.errors.OutOfRangeError():
print('All finished')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
main()