-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathurdiffusion.py
686 lines (532 loc) · 24.6 KB
/
urdiffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# originally from https://github.com/lucidrains/denoising-diffusion-pytorch
'''
ur diffusion
@htoyryla June 2023
diffusion library with support for DDIM with conditioning
'''
import math
import copy
import torch
from torch import nn, einsum
import torch.nn.functional as F
from inspect import isfunction
from functools import partial
from torch.utils import data
from torch.cuda.amp import autocast, GradScaler
from pathlib import Path
from torch.optim import Adam
from torchvision import transforms, utils
from PIL import Image
from pytorch_msssim import ssim
from tqdm import tqdm
from einops import rearrange
# helpers functions
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def cycle(dl):
while True:
for data in dl:
yield data
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
# small helper modules
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_model_average(self, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = self.update_average(old_weight, up_weight)
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
# gaussian diffusion trainer class
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def cosine_beta_schedule(timesteps, s = 0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
class DDIMDiffusion(nn.Module):
def __init__(
self,
denoise_fn = None,
#*,
image_size = 512,
channels = 3,
timesteps = 100,
loss_type = 'l1',
training_steps = 1000,
eta = 0.5,
skip = 0,
betas = None
):
super().__init__()
self.channels = channels
self.image_size = image_size
self.denoise_fn = denoise_fn
if betas == None:
s = 0.008
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
betas = torch.clip(betas, 0, 0.999)
#betas = cosine_beta_schedule(timesteps)
betas = betas.to("cuda") #, dtype=torch.float64)
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
self.training_steps = training_steps
self.skip = skip
self.eta = eta
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- pred_xstart
) / extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def condition_score_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
"""
Compute what the p_mean_variance output would have been, should the
model's score function be conditioned by cond_fn.
See condition_mean() for details on cond_fn.
Unlike condition_mean(), this instead uses the conditioning strategy
from Song et al (2020).
"""
alpha_bar = extract(self.alphas_cumprod, t, x.shape)
eps = self.predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
x, t, p_mean_var['pred_xstart'] #, **model_kwargs
)
out = p_mean_var.copy()
out["pred_xstart"] = self.predict_xstart_from_eps(x, t, eps)
out["mean"], _, _ = self.q_posterior_mean_variance(
x_start=out["pred_xstart"], x_t=x, t=t
)
return out
def scale_timesteps(self, t):
return t.float() * (self.training_steps / self.num_timesteps)
#@torch.no_grad()
def ddim_sample_with_grad(
self,
x,
t,
clip_denoised=True,
denoise_fn=None,
cond_fn=None
):
"""
Sample x_{t-1} from the model using DDIM.
Same usage as p_sample().
"""
with torch.enable_grad():
x = x.detach().requires_grad_()
with torch.autocast(device_type='cuda', dtype=torch.float16):
model_output = self.denoise_fn(x, self.scale_timesteps(t)) # d.denoise_fn(x, t)
x_start = self.predict_start_from_noise(x, t = t, noise = model_output)
x_start.requires_grad_()
if clip_denoised:
x_start.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start = x_start, x_t = x, t = t)
out = {}
out['pred_xstart'] = x_start
out['mean'] = model_mean
out["variance"] = posterior_variance
out["pred_noise"] = model_output
if cond_fn is not None:
out = self.condition_score_with_grad(cond_fn, out, x, t)
out["pred_xstart"] = out["pred_xstart"].detach()
eps = self.predict_eps_from_xstart(x, t, out["pred_xstart"])
alpha = self.alphas_cumprod[t]
alpha_next = self.alphas_cumprod_prev[t]
sigma = self.eta * torch.sqrt((1 - alpha_next) / (1 - alpha)) * torch.sqrt(1 - alpha/alpha_next)
c = (1 - alpha_next - sigma ** 2).sqrt()
# Equation 12.
noise = torch.randn_like(x)
mean_pred = (
out["pred_xstart"] * torch.sqrt(alpha_next[:, None, None, None])
+ c[:, None, None, None] * eps #out['pred_noise']
)
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
) # no noise when t == 0
sample = mean_pred + nonzero_mask * sigma[:, None, None, None] * noise
return sample.detach()
@torch.no_grad()
def sample_loop(self, bs=2, timesteps=100):
device = self.betas.device
x = torch.randn(bs, 3, self.image_size, self.image_size, device=device)
indices = list(range(timesteps))[::-1]
for i in tqdm(indices):
t = torch.tensor([i] * bs, device='cuda').cuda().detach()
x = self.ddim_sample_with_grad(x.detach(), t, cond_fn=None).detach() #cond_fn) # ['sample']
return x
class GaussianDiffusion(nn.Module):
def __init__(
self,
denoise_fn,
*,
image_size,
channels = 3,
timesteps = 1000,
loss_type = 'l1'
):
super().__init__()
self.channels = channels
self.image_size = image_size
self.denoise_fn = denoise_fn
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20)))
self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- pred_xstart
) / extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.denoise_fn(x, t))
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))
return img
@torch.no_grad()
def sample(self, batch_size = 16):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size))
@torch.no_grad()
def interpolate(self, x1, x2, t = None, lam = 0.5):
b, *_, device = *x1.shape, x1.device
t = default(t, self.num_timesteps - 1)
assert x1.shape == x2.shape
t_batched = torch.stack([torch.tensor(t, device=device)] * b)
xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))
img = (1 - lam) * xt1 + lam * xt2
for i in tqdm(reversed(range(0, t)), desc='interpolation sample time step', total=t):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long))
return img
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, noise = None):
b, c, h, w = x_start.shape
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t)
if self.loss_type == 'l1':
loss = (noise - x_recon).abs().mean()
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
elif self.loss_type == 'ssim':
loss = 20*(1 - ssim(noise, x_recon))
else:
raise NotImplementedError()
return loss
def forward(self, x, *args, **kwargs):
b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
return self.p_losses(x, t, *args, **kwargs)
# dataset classes
class Dataset(data.Dataset):
def __init__(self, folder, image_size, exts = ['jpg', 'jpeg', 'png'], transform=None):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
if transform != None:
self.transform = transform
else:
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Lambda(lambda t: (t * 2) - 1)
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path).convert('RGB')
return self.transform(img)
# trainer class
class Trainer(object):
def __init__(
self,
diffusion_model,
folder,
*,
ema_decay = 0.995,
image_size = 128,
train_batch_size = 32,
train_lr = 2e-5,
train_num_steps = 100000,
gradient_accumulate_every = 2,
amp = False,
step_start_ema = 2000,
update_ema_every = 10,
save_and_sample_every = 1000,
results_folder = './results',
nsamples = 2,
opts = {},
transform = None,
ddim_steps = 100
):
super().__init__()
self.model = diffusion_model
self.ema = EMA(ema_decay)
self.ema_model = copy.deepcopy(self.model)
self.update_ema_every = update_ema_every
self.step_start_ema = step_start_ema
self.save_and_sample_every = save_and_sample_every
self.batch_size = train_batch_size
self.image_size = diffusion_model.image_size
self.gradient_accumulate_every = gradient_accumulate_every
self.train_num_steps = train_num_steps
self.ds = Dataset(folder, image_size, transform=transform)
self.dl = cycle(data.DataLoader(self.ds, batch_size = train_batch_size, shuffle=True, pin_memory=True))
self.opt = Adam(diffusion_model.parameters(), lr=train_lr, eps=1e-5)
self.step = 0
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.results_folder = Path(results_folder)
self.results_folder.mkdir(exist_ok = True)
self.nsamples = nsamples
self.opts = opts
self.reset_parameters()
if ddim_steps > 0:
self.ddim = DDIMDiffusion(denoise_fn = self.ema_model.denoise_fn, image_size = self.image_size, eta=0)
else:
self.ddim = None
def reset_parameters(self):
self.ema_model.load_state_dict(self.model.state_dict())
def step_ema(self):
if self.step < self.step_start_ema:
self.reset_parameters()
return
self.ema.update_model_average(self.ema_model, self.model)
def save(self, milestone):
data = {
'step': self.step,
'model': self.model.state_dict(),
'ema': self.ema_model.state_dict(),
'scaler': self.scaler.state_dict(),
'mults': self.opts.mults,
'mtype': self.opts.model
}
torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))
def load(self, milestone):
data = torch.load(str(self.results_folder / f'model-{milestone}.pt'))
self.step = data['step']
self.model.load_state_dict(data['model'])
self.ema_model.load_state_dict(data['ema'])
self.scaler.load_state_dict(data['scaler'])
def train(self):
cl = 0
while self.step < self.train_num_steps:
al = 0
for i in range(self.gradient_accumulate_every):
data = next(self.dl).cuda()
with autocast(enabled = self.amp):
loss = self.model(data)
self.scaler.scale(loss / self.gradient_accumulate_every).backward()
al += loss.item()
al /= self.gradient_accumulate_every
cl += al
print(f'{self.step}: {al}')
self.scaler.step(self.opt)
self.scaler.update()
self.opt.zero_grad()
if self.step % self.update_ema_every == 0:
self.step_ema()
if self.step != 0 and self.step % self.save_and_sample_every == 0:
print("average loss: ",cl/self.save_and_sample_every)
cl = 0
milestone = self.step // self.save_and_sample_every
batches = num_to_groups(self.nsamples, self.batch_size)
print("trainer", batches)
with torch.no_grad():
if self.ddim is None:
all_images_list = list(map(lambda n: self.ema_model.sample(batch_size=n), batches))
else:
all_images_list = list(map(lambda n: self.ddim.sample_loop(bs=n), batches))
#all_images_list = list(self.ddim.sample_loop())
all_images = torch.cat(all_images_list, dim=0)
#all_images = (all_images + 1) * 0.5
all_images = all_images + 0.5
utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = 6)
self.save(milestone)
self.step += 1
print('training completed')