-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler_005.py
58 lines (43 loc) · 1.05 KB
/
euler_005.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from math import sqrt
__author__ = 'ray'
# get number of inputs
num_entries = int(raw_input())
# get each input in an array
inputs = []
for i in range(num_entries):
num = int(raw_input())
inputs.append(num)
# find all prime numbers
def get_prime(n):
# initialize iterator, array, upper test limit
itr = 2
primes = []
max_int = int(sqrt(n))
# loop through each number in ascending order
while itr <= max_int:
# we're done
if n == 1:
break
# we found a factor, start over
if n % itr == 0:
primes.append(itr)
n /= itr
itr = 2
else:
itr += 1
# attach left over prime (1 is valid)
primes.append(n)
return primes
def main():
# iterate through each input
for num in inputs:
# input constraints
if num < 1 or num > 40:
continue
# find the product
product = 1
for y in xrange(1, num + 1):
product *= y
print y
print get_prime(y)
main()