-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkarman_taichi.py
683 lines (582 loc) · 25.5 KB
/
karman_taichi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import taichi as ti
import time
import numpy as np
ti.init(default_fp=ti.f64, arch=ti.cpu)
# Length and height of the channel
lx = 0.5
ly = 0.1
# nx and ny have to be multiples of 8.
nx = 640
ny = 128
# Grid size
dx = lx / nx
dy = ly / ny
# Density and viscosity of the fluid
rho = 1.0
mu = 0.01
# Timestep
dt = 0.00001
# Relaxation factors when solving momentum equation and pressure correction
velo_rel = 0.8
p_rel = 0.2
ptr_size = 16
# Add 1 cell padding to all directions.
p = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 2))
pcor = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 2))
p_disp = ti.field(dtype=ti.f64, shape=(3 *(nx + 2), 3*(ny + 2)))
pcor_disp = ti.field(dtype=ti.f64, shape=(3 *(nx + 2), 3*(ny + 2)))
udiv = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 2))
udiv_disp = ti.field(dtype=ti.f64, shape=(3 *(nx + 2), 3*(ny + 2)))
u = ti.field(dtype=ti.f64, shape=(nx + 3, ny + 2))
u0 = ti.field(dtype=ti.f64, shape=(nx + 3, ny + 2))
ucor = ti.field(dtype=ti.f64, shape=(nx + 3, ny + 2))
u_post = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 2))
u_disp = ti.field(dtype=ti.f64, shape=(3 *(nx + 2), 3*(ny + 2)))
v = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 3))
v0 = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 3))
vcor = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 3))
v_post = ti.field(dtype=ti.f64, shape=(nx + 2, ny + 2))
v_disp = ti.field(dtype=ti.f64, shape=(3*(nx + 2), 3*(ny + 2)))
# ct stands for Cell Type.
# ct = 0 -> Fluid
# ct = 1 -> Solid
ct = ti.field(dtype=ti.i32, shape=(nx + 2, ny + 2))
# for solving u momentum using Jacobian
# Au and Mu declared as multiple layers to avoid virtual memory error.
Au = ti.field(dtype=ti.f64)
Mu = ti.field(dtype=ti.f64)
ti.root.pointer(ti.ij,((nx+1)*ny//ptr_size,(nx+1)*ny//ptr_size)).dense(ti.ij,(ptr_size,ptr_size)).place(Au, Mu)
bu = ti.field(dtype=ti.f64)
xu = ti.field(dtype=ti.f64)
xu_new = ti.field(dtype=ti.f64)
xuold = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, (nx+1)*ny).place(bu, xu, xu_new, xuold)
# Additional vectors for BiCG
Auxu = ti.field(dtype=ti.f64)
Aupu = ti.field(dtype=ti.f64)
Aupu_tld = ti.field(dtype=ti.f64)
ru = ti.field(dtype=ti.f64)
pu = ti.field(dtype=ti.f64)
zu = ti.field(dtype=ti.f64)
ru_tld = ti.field(dtype=ti.f64)
pu_tld = ti.field(dtype=ti.f64)
zu_tld = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, (nx+1)*ny).place(Auxu, Aupu, Aupu_tld)
ti.root.dense(ti.i, (nx+1)*ny).place(ru, pu, zu, ru_tld, pu_tld, zu_tld)
# More additional vectors for BiCGSTAB
pu_hat = ti.field(dtype=ti.f64)
su = ti.field(dtype=ti.f64)
su_hat = ti.field(dtype=ti.f64)
tu = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, (nx+1)*ny).place(pu_hat, su, su_hat, tu)
# for solving v momentum using Jacobian
Av = ti.field(dtype=ti.f64)
Mv = ti.field(dtype=ti.f64)
ti.root.pointer(ti.ij,(nx*(ny+1)//ptr_size,nx*(ny+1)//ptr_size)).dense(ti.ij,(ptr_size,ptr_size)).place(Av, Mv)
bv = ti.field(dtype=ti.f64)
xv = ti.field(dtype=ti.f64)
xv_new = ti.field(dtype=ti.f64)
xvold = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, nx*(ny+1)).place(bv, xv, xv_new, xvold)
# Additional vectors for BiCG
Avxv = ti.field(dtype=ti.f64)
Avpv = ti.field(dtype=ti.f64)
Avpv_tld = ti.field(dtype=ti.f64)
rv = ti.field(dtype=ti.f64)
pv = ti.field(dtype=ti.f64)
zv = ti.field(dtype=ti.f64)
rv_tld = ti.field(dtype=ti.f64)
pv_tld = ti.field(dtype=ti.f64)
zv_tld = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, nx*(ny+1)).place(Avxv, Avpv, Avpv_tld)
ti.root.dense(ti.i, nx*(ny+1)).place(rv, pv, zv, rv_tld, pv_tld, zv_tld)
# More additional vectors for BiCGSTAB
pv_hat = ti.field(dtype=ti.f64)
sv = ti.field(dtype=ti.f64)
sv_hat = ti.field(dtype=ti.f64)
tv = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, nx*(ny+1)).place(pv_hat, sv, sv_hat, tv)
# For pressure correction equation.
Ap = ti.field(dtype=ti.f64)
Mp = ti.field(dtype=ti.f64)
ti.root.pointer(ti.ij,(nx*ny//ptr_size,nx*ny//ptr_size)).dense(ti.ij,(ptr_size,ptr_size)).place(Ap, Mp)
bp = ti.field(dtype=ti.f64)
xp = ti.field(dtype=ti.f64)
Apxp = ti.field(dtype=ti.f64)
rp = ti.field(dtype=ti.f64)
rp_tld = ti.field(dtype=ti.f64)
pp = ti.field(dtype=ti.f64)
pp_hat = ti.field(dtype=ti.f64)
Appp = ti.field(dtype=ti.f64)
sp = ti.field(dtype=ti.f64)
sp_hat = ti.field(dtype=ti.f64)
tp = ti.field(dtype=ti.f64)
ti.root.dense(ti.i, nx * ny).place(bp, xp, Apxp, rp, rp_tld, pp, pp_hat, Appp, sp, sp_hat, tp)
@ti.kernel
def init():
for i, j in ti.ndrange(nx + 2, ny + 2):
# Give the intended pressure drop here
# p[i, j] = 100 - 6.0 * i / nx
p[i, j] = 100 - 4000.0 * i / nx
for i, j in ti.ndrange(nx + 3, ny + 2):
u[i, j] = 0.0
u0[i, j] = 0.0 # u[i, j]
for i, j in ti.ndrange(nx + 2, ny + 3):
v[i, j] = 0.0
v0[i, j] = 0.0 # v[i, j]
for i, j in ti.ndrange(nx + 2, ny + 2):
ct[i, j] = 1 # "1" stands for solid
for i, j in ti.ndrange((1, nx + 1), (1, ny + 1)):
ct[i, j] = -1 # "-1" stands for fluid
for i, j in ti.ndrange(nx, ny):
if (((i - 64)**2 + (j - 32)**2) < 144):
ct[i, j] = 1
u[i, j] = 0
u0[i, j] = 0
v[i, j] = 0
v0[i, j] = 0
def write_matrix(mat, name):
print(" >> Writing matrix data to", name, ".csv ...")
np.savetxt(name + ".csv", mat.to_numpy(), delimiter = ",")
@ti.kernel
def fill_Au():
for i, j in ti.ndrange((1, nx + 2), (1, ny + 1)):
k = (i - 1) * ny + (j - 1)
# Inlet
# ct[i - 1, j] is the left cell of u[i,j]
# ct[i,j] + ct[i-1,j] = 2 means the u is inside a block
if ct[i - 1, j] == 1:
# Au[k, k] = 1.0
# bu[k] = u[i, j]
# For pressure inlet
Au[k, k] = 1.0
Au[k, k+ny] = -1.0
bu[k] = 0.0
# Outlet
# ct[i,j] is the right cell of u[i,j]
elif ct[i, j] == 1:
Au[k, k] = 1.0 # Au[k-ny,k-ny]
Au[k, k - ny] = -1.0 # -Au[k,k]
bu[k] = 0.0
# Upper boundary
# ct[i, j - 1] is the upper cell of u[i,j]
elif (ct[i, j] + ct[i, j - 1]) == 0:
# Notice that 2*mu should be followed by dx/dy.
Au[k, k + 1] = -mu * dx / dy - rho * 0.5 * (v[i - 1, j + 1] + v[i, j + 1]) * dx # as
Au[k, k - ny] = -mu * dy / dx - rho * 0.5 * (u[i, j] + u[i - 1, j]) * dy # aw
Au[k, k + ny] = -mu * dy / dx - (-rho * 0.5 * (u[i, j] + u[i + 1, j]) * dy) # ae
Au[k, k] = - Au[k, k + 1] - Au[k, k - ny] - \
Au[k, k + ny] + rho * dx * dy / dt + 2 * mu * dx/dy # ap
bu[k] = (p[i - 1, j] - p[i, j]) * dy + rho * dx * \
dy / dt * u0[i, j] # <= Unsteady term
# Lower boundary
elif (ct[i, j] + ct[i, j + 1]) == 0:
Au[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i - 1, j] + v[i, j]) * dx) # an
Au[k, k - ny] = -mu * dy / dx - rho * 0.5 * (u[i, j] + u[i - 1, j]) * dy # aw
Au[k, k + ny] = -mu * dy / dx - (-rho * 0.5 * (u[i, j] + u[i + 1, j]) * dy) # ae
Au[k, k] = -Au[k, k - 1] - Au[k, k - ny] - \
Au[k, k + ny] + rho * dx * dy / dt + 2* mu * dx/dy # ap
bu[k] = (p[i - 1, j] - p[i, j]) * dy + rho * dx * \
dy / dt * u0[i, j] # <= Unsteady term
# Normal internal cells
else:
Au[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i - 1, j] + v[i, j]) * dx) # an
Au[k, k + 1] = -mu * dx / dy - rho * 0.5 * (v[i - 1, j + 1] + v[i, j + 1]) * dx # as
Au[k, k - ny] = -mu * dy / dx - rho * 0.5 * (u[i, j] + u[i - 1, j]) * dy # aw
Au[k, k + ny] = -mu * dy / dx - (-rho * 0.5 * (u[i, j] + u[i + 1, j]) * dy) # ae
Au[k, k] = -Au[k, k - 1] - Au[k, k + 1] - Au[k, k - ny] - \
Au[k, k + ny] + rho * dx * dy / dt # ap
bu[k] = (p[i - 1, j] - p[i, j]) * dy + rho * dx * \
dy / dt * u0[i, j] # <= Unsteady term
Mu[k,k] = Au[k,k]
# Internal obstacle
for i, j in ti.ndrange((2, nx + 1), (2, ny)):
k = (i - 1) * ny + (j - 1)
# For u velocity on the interface or inside the obstacle
if (ct[i - 1, j] + ct[i, j]) == 0 or (ct[i - 1, j] + ct[i, j]) == 2:
for nb in ti.static([k-ny,k-1,k+1,k+ny]):
Au[k, nb] = 0.0
Au[k, k] = 1.0
bu[k] = 0.0
elif (ct[i, j] + ct[i, j - 1]) == 0 or (ct[i - 1, j] + ct[i - 1, j - 1]) == 0:
# Notice that 2*mu should be followed by dx/dy.
Au[k, k + 1] = -mu * dx / dy - rho * 0.5 * (v[i - 1, j + 1] + v[i, j + 1]) * dx # as
Au[k, k - ny] = -mu * dy / dx - rho * 0.5 * (u[i, j] + u[i - 1, j]) * dy # aw
Au[k, k + ny] = -mu * dy / dx - (-rho * 0.5 * (u[i, j] + u[i + 1, j]) * dy) # ae
Au[k, k] = - Au[k, k + 1] - Au[k, k - ny] - \
Au[k, k + ny] + rho * dx * dy / dt + 2 * mu * dx/dy # ap
bu[k] = (p[i - 1, j] - p[i, j]) * dy + rho * dx * \
dy / dt * u0[i, j] # <= Unsteady term
elif (ct[i, j] + ct[i, j - 1]) == 0 or (ct[i - 1, j] + ct[i - 1, j - 1]) == 0:
Au[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i - 1, j] + v[i, j]) * dx) # an
Au[k, k - ny] = -mu * dy / dx - (rho * 0.5 * (u[i, j] + u[i - 1, j]) * dy) # aw
Au[k, k + ny] = -mu * dy / dx - (-rho * 0.5 * (u[i, j] + u[i + 1, j]) * dy) # ae
Au[k, k] = -Au[k, k - 1] - Au[k, k - ny] - \
Au[k, k + ny] + rho * dx * dy / dt + 2* mu * dx/dy # ap
bu[k] = (p[i - 1, j] - p[i, j]) * dy + rho * dx * \
dy / dt * u0[i, j] # <= Unsteady term
@ti.kernel
def fill_Av():
for i, j in ti.ndrange((1, nx + 1), (1, ny + 2)):
k = (i - 1) * (ny + 1) + (j - 1)
# Upper and lower boundary
if (ct[i, j] + ct[i, j - 1]) == 0 or (ct[i, j] + ct[i, j - 1]) == 2:
Av[k, k] = 1.0
bv[k] = v[i, j]
# Inlet: do not access west cell A[k,k-ny-1], treat as a wall boundary
elif (ct[i, j]+ct[i-1, j]) == 0:
Av[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i, j - 1] + v[i, j]) * dx) # an
Av[k, k + 1] = -mu * dx / dy - (rho * 0.5 * (v[i, j + 1] + v[i, j]) * dx) # as
Av[k, k + ny + 1] = -mu * dy / dx - (-rho * 0.5 * (u[i + 1, j - 1] + u[i + 1, j]) * dy) # ae
Av[k, k] = -Av[k, k - 1] - Av[k, k + 1] - \
Av[k, k + ny + 1] + rho * dx * dy / dt + 2*mu*dy/dx # ap
bv[k] = (p[i, j] - p[i, j - 1]) * dx + \
rho * dx * dy / dt * v0[i, j]
# Outlet: do not access east cell, treat as a wall boundary
elif (ct[i, j] + ct[i+1, j]) == 0:
Av[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i, j - 1] + v[i, j]) * dx) # an
Av[k, k + 1] = -mu * dx / dy - (rho * 0.5 * (v[i, j + 1] + v[i, j]) * dx) # as
Av[k, k - ny - 1] = -mu * dy / dx - (rho * 0.5 * (u[i, j] + u[i, j - 1]) * dy) # aw
Av[k, k] = -Av[k, k - 1] - Av[k, k + 1] - Av[k, k - ny - 1] \
+ rho * dx * dy / dt + 2*mu*dy/dx # ap
bv[k] = (p[i, j] - p[i, j - 1]) * dx + \
rho * dx * dy / dt * v0[i, j]
else:
"""
TODO: Didn't cover inlet and outlet boundary. Actually accessing
elements out of bound, for example, Av[1,-30].
However, since in solve_v, when convert to numpy, A[1,-30] become
0.0 automatically.
"""
Av[k, k - 1] = -mu * dx / dy - (-rho * 0.5 * (v[i, j - 1] + v[i, j]) * dx) # an
Av[k, k + 1] = -mu * dx / dy - (rho * 0.5 * (v[i, j + 1] + v[i, j]) * dx) # as
Av[k, k - ny - 1] = -mu * dy / dx - (rho * 0.5 * (u[i, j] + u[i, j - 1]) * dy) # aw
Av[k, k + ny + 1] = -mu * dy / dx - (-rho * 0.5 * (u[i + 1, j - 1] + u[i + 1, j]) * dy) # ae
Av[k, k] = -Av[k, k - 1] - Av[k, k + 1] - Av[k, k - ny - 1] - \
Av[k, k + ny + 1] + rho * dx * dy / dt # ap
bv[k] = (p[i, j] - p[i, j - 1]) * dx + \
rho * dx * dy / dt * v0[i, j]
for i, j in ti.ndrange((1, nx + 1), (1, ny + 2)):
k = (i - 1) * (ny + 1) + (j - 1)
Mv[k,k] = Av[k,k]
@ti.kernel
def fill_Ap():
for i, j in ti.ndrange((1, nx + 1), (1, ny + 1)):
k = (i - 1) * ny + (j - 1)
bp[k] = rho * (u[i, j] - u[i + 1, j]) * dy + rho * (v[i, j + 1] - v[i, j]) * dx
# The following change does reduce the magnitude of pcor, but is incorrect...?
# bp[k] = rho * (u[i, j] - u[i + 1, j]) * dy *dx + rho * (v[i, j + 1] - v[i, j]) * dx*dy
# Go back to Av matrix, find the corresponding v
vk = (i - 1) * (ny + 1) + (j - 1)
Ap[k, k - 1] = -rho * dx * dx / Av[vk, vk]
Ap[k, k + 1] = -rho * dx * dx / Av[vk + 1, vk + 1]
# Go back to Au matrix
uk = k
Ap[k, k - ny] = -rho * dy * dy / Au[uk, uk]
Ap[k, k + ny] = -rho * dy * dy / Au[uk + ny, uk + ny]
if (ct[i, j] + ct[i, j - 1]) == 0:
Ap[k, k - 1] = 0
if (ct[i, j] + ct[i, j + 1]) == 0:
Ap[k, k + 1] = 0
if (ct[i, j] + ct[i - 1, j]) == 0:
Ap[k, k - ny] = 0
if (ct[i, j] + ct[i + 1, j]) == 0:
Ap[k, k + ny] = 0
Ap[k, k] = -Ap[k, k - 1] - Ap[k, k + 1] - Ap[k, k - ny] - Ap[k, k + ny]
# if k==0:
# print(Ap[k,k-1], Ap[k,k+1], Ap[k,k-ny], Ap[k,k+ny], Ap[k,k])
Mp[k, k] = Ap[k, k]
# Inlet and outlet pressure correction all equal zero. (Fixed pressure)
for i,j in ti.ndrange(ny, nx * ny):
if i == j:
# Inlet
Ap[i, j] = 1.0
Mp[i, j] = 1.0
bp[j] = 0.0
# Outlet
Ap[nx * ny - i, nx * ny - j] = 1.0
Mp[nx * ny - i, nx * ny - j] = 1.0
bp[nx*ny - j] = 0.0
else:
Ap[i, j] = 0.0
Mp[i, j] = 0.0
@ti.kernel
def bicgstab(A:ti.template(),
b:ti.template(),
x:ti.template(),
M:ti.template(),
Ax:ti.template(),
r:ti.template(),
r_tld:ti.template(),
p:ti.template(),
p_hat:ti.template(),
Ap:ti.template(),
s:ti.template(),
s_hat:ti.template(),
t:ti.template(),
nx:ti.i32,
ny:ti.i32,
n:ti.i32,
eps: ti.f64,
output:ti.i32):
# dot(A,x)
for i in range(n):
Ax[i] = 0.0
# Only traverse certain elements. Need to use ti.static() to convert python list.
for j in ti.static([i-ny-1,i-ny,i-1,i,i+1,i+ny,i+ny+1]):
Ax[i] += A[i, j] * x[j]
# r = b - dot(A,x)
for i in range(n):
r[i] = b[i] - Ax[i]
r_tld[i] = r[i]
residual_init = 0.0
for i in range(n):
residual_init += r[i] * r[i]
omega = 1.0
alpha = 1.0
beta = 1.0
rho_1 = 1.0
for _ in range(1):
for steps in range(100*n):
rho = 0.0
for i in range(n):
rho += r[i] * r_tld[i]
if rho == 0.0:
if output:
print(" >> Bicgstab failed...")
break
if steps == 0:
for i in range(n):
p[i] = r[i]
else:
beta = (rho / rho_1) * (alpha/omega)
for i in range(n):
p[i] = r[i] + beta*(p[i] - omega*Ap[i])
for i in range(n):
p_hat[i] = 1/M[i,i] * p[i]
# dot(A,p)
# Ap => v
for i in range(n):
Ap[i] = 0.0
# Only traverse certain elements. Need to use ti.static() to convert python list.
for j in ti.static([i-ny-1,i-ny,i-1,i,i+1,i+ny,i+ny+1]):
Ap[i] += A[i, j] * p_hat[j]
alpha_lower = 0.0
for i in range(n):
alpha_lower += r_tld[i] * Ap[i]
alpha = rho / alpha_lower
for i in range(n):
s[i] = r[i] - alpha * Ap[i]
# Early convergnece check...
for i in range(n):
s_hat[i] = 1/M[i, i]*s[i]
for i in range(n):
t[i] = 0.0
# Only traverse certain elements. Need to use ti.static() to convert python list.
for j in ti.static([i-ny-1,i-ny,i-1,i,i+1,i+ny,i+ny+1]):
t[i] += A[i, j] * s_hat[j]
omega_upper = 0.0
omega_lower = 0.0
for i in range(n):
omega_upper += t[i] * s[i]
omega_lower += t[i] * t[i]
omega = omega_upper / omega_lower
for i in range(n):
x[i] += alpha* p_hat[i] + omega*s_hat[i]
for i in range(n):
r[i] = s[i] - omega*t[i]
residual = 0.0
for i in range(n):
residual += r[i] * r[i]
if output:
print(" >> Iteration ", steps, ", initial residual = ", residual_init, ", current residual = ", residual)
if ti.sqrt(residual / residual_init) < eps:
if output:
print(" >> The solution has converged...")
break
if omega==0.0:
if output:
print(" >> Omega = 0.0 ...")
break
rho_1 = rho
@ti.kernel
def xu_back():
for i, j in ti.ndrange(nx + 1, ny):
# u[i + 1, j + 1] = xu[i * ny + j]
# New velocity under-relaxation
u[i + 1, j + 1] = u[i + 1, j + 1] + velo_rel * (xu[i * ny + j] - u[i + 1, j + 1])
@ti.kernel
def xv_back():
for i, j in ti.ndrange(nx, ny + 1):
# v[i + 1, j + 1] = xv[i * ( ny + 1 ) + j]
# New velocity under-relaxation
v[i + 1, j + 1] = v[i + 1, j + 1] + velo_rel * (xv[i * ( ny + 1 ) + j] - v[i + 1, j + 1])
@ti.kernel
def xp_back():
for i, j in ti.ndrange(nx, ny):
pcor[i + 1, j + 1] = xp[i * ny + j]
# linalg_output controls whether show convergence of BiCGSTAB solver.
def solve_momentum_bicgstab(eps, max_iterations, solve_output, linalg_output):
print(" >> Now Solving momentum equations using BiCGSTAB...")
for steps in range(max_iterations):
if solve_output:
print(" [", steps,"/",max_iterations, "] Iteratively solving momentum equation using BiCGSTAB...")
fill_Au()
fill_Av()
bicgstab(Au, bu, xu, Mu, Auxu, ru, ru_tld, pu, pu_hat,
Aupu, su, su_hat, tu, nx, ny, (nx+1)*ny, eps, linalg_output)
bicgstab(Av, bv, xv, Mv, Avxv, rv, rv_tld, pv, pv_hat,
Avpv, sv, sv_hat, tv, nx, ny, nx*(ny+1), eps, linalg_output)
xu_back()
xv_back()
def solve_pcorrection_bicgstab(eps, linalg_output):
print(" >> Now Solving pressure correction using BiCGSTAB...")
fill_Ap()
bicgstab(Ap, bp, xp, Mp, Apxp, rp, rp_tld, pp, pp_hat,
Appp, sp, sp_hat, tp, nx, ny, nx * ny, eps, linalg_output)
xp_back()
@ti.kernel
def puv_correction()->ti.f64:
pcor_max = 0.0
ucor_max = 0.0
for i, j in ti.ndrange((1, nx + 2), (1, ny + 1)):
k = (i - 1) * ny + (j - 1)
# Upper and lower boundary
if (ct[i - 1, j] + ct[i, j]) == 0 or (ct[i - 1, j] + ct[i, j]) == 2:
pass
else:
ucor[i, j] = (pcor[i - 1, j] - pcor[i, j]) * dy / Au[k, k]
u[i, j] = u[i, j] + ucor[i, j]
if ti.abs(ucor[i, j] / (u[i, j] + 1.0e-9)) >= ucor_max:
ucor_max = ti.abs(ucor[i, j] / (u[i, j] + 1.0e-9))
vcor_max = 0.0
for i, j in ti.ndrange((1, nx + 1), (1, ny + 2)):
k = (i - 1) * (ny + 1) + (j - 1)
# Upper and lower boundary
if (ct[i, j] + ct[i, j - 1]) == 0 or (ct[i, j] + ct[i, j - 1]) == 2:
pass
else:
vcor[i, j] = (pcor[i, j] - pcor[i, j - 1]) * dx / Av[k, k]
v[i, j] = v[i, j] + vcor[i, j]
if ti.abs(vcor[i, j] / (v[i, j] + 1.0e-9)) >= vcor_max:
vcor_max = ti.abs(vcor[i, j] / (v[i, j] + 1.0e-9))
for i, j in ti.ndrange(nx + 2, ny + 2):
if ct[i, j] == 1:
pass
else:
p[i, j] = p[i, j] + p_rel * pcor[i, j]
if ti.abs(pcor[i, j]) > pcor_max:
pcor_max = ti.abs(pcor[i, j])
return pcor_max
@ti.kernel
def post_process_field():
# First, interpolate u,v onto the center of a cell
for i,j in ti.ndrange(nx+2,ny+2):
u_post[i,j] = 0.5 * (u[i,j] + u[i+1,j])
v_post[i,j] = 0.5 * (v[i,j] + v[i,j+1])
# Calculate the divergence of the velocity field
# udiv is of [nx+2, ny+2] size but only calculated in [(1,nx+1), (1,ny+1)] area.
for i,j in ti.ndrange((1,nx+1), (1,ny+1)):
udiv[i,j] = (u[i,j] - u[i+1,j]) * dy + (v[i,j+1] - v[i,j]) * dx
# Exterpolate velocity to a bigger canvas.
for i,j in ti.ndrange(3*(nx+2),3*(ny+2)):
u_disp[i,j] = u_post[i//3, j//3]
v_disp[i,j] = v_post[i//3, j//3]
udiv_disp[i,j] = udiv[i//3, j//3]
p_disp[i,j] = p[i//3, j//3]
pcor_disp[i,j] = pcor[i//3, j//3]
# Scale the value of display field to range [0,1]
scale_field(u_disp)
scale_field(v_disp)
scale_field(p_disp)
scale_field(pcor_disp)
scale_field(udiv_disp)
@ti.func
def scale_field(f):
f_max = 0.0
f_min = 1.0e9
for i,j in f:
if f[i,j] > f_max:
f_max = f[i,j]
if f[i,j] < f_min:
f_min = f[i,j]
for i,j in f:
f[i,j] = (f[i,j] - f_min) / (f_max - f_min + 1.0e-9)
@ti.kernel
def correct_conserv():
mdot_inlet = 0.0
mdot_outlet = 0.0
coef = 1.0
for j in range(1,ny+1):
mdot_inlet += u[1, j]
mdot_outlet += u[nx+1, j]
# print(" >> Before correction, the mass flow at the inlet is", mdot_inlet)
# print(" >> Before correction, the mass flow at the outlet is", mdot_outlet)
coef = mdot_inlet / mdot_outlet
for j in range(1,ny+1):
u[nx+1, j] = coef * u[nx+1, j]
mdot_outlet = 0.0
for j in range(1,ny+1):
mdot_outlet += u[nx+1, j]
# print(" >> After correction, the mass flow at the outlet is", mdot_outlet)
# Check the overall divergence of the whole velocity field. Should be zero
# after correction.
udiv_overall = 0.0
for i,j in ti.ndrange((1,nx+1), (1,ny+1)):
udiv[i, j] = (u[i, j] - u[i+1, j]) * dy + (v[i, j+1] - v[i, j]) * dx
udiv_overall += udiv[i, j]
# print("The overall divergence of velocity after correction is", udiv_overall)
@ti.kernel
def time_forward():
for i,j in ti.ndrange(nx+3, ny+2):
u0[i, j] = u[i, j]
for i,j in ti.ndrange(nx+2, ny+3):
v0[i, j] = v[i, j]
if __name__ == "__main__":
init()
for time_step in range(500000):
# subtime_step is the iteration cycle inside a time-step.
# maximum steps is 50, or iteration will end when the overall residual is < 1.0e-8
pcor_max = 0.0
for subtime_step in range(500):
pcor_current = 10000.0
start = time.time()
solve_momentum_bicgstab(1e-8, 1, 0, 0)
print(f' >> [ time = {time_step * dt: .4f} ] It took {time.time()-start: .2f} sec to solve the momentum equation.')
# Use write function to output matrix as desired.
# write_matrix(Au, "Au")
# write_matrix(Av, "Av")
# print("THe shape of Au is ", Au.shape)
# print("The shape of Av is ", Av.shape)
correct_conserv()
solve_pcorrection_bicgstab(1e-8, 0)
if subtime_step == 0:
pcor_max = puv_correction()
else:
pcor_current = puv_correction()
post_process_field()
print(f' >> [ time = {time_step * dt: .4f} ] The current pcor_max is {pcor_max: .3e} and the current p-correction compared with pcor_max is {(pcor_current/pcor_max): .3e}')
if pcor_current < 1.0e-4 * pcor_max:
print(f' >> [ time = {time_step * dt: .4f} ] The flow field has converged on this time step.')
break
time_forward()
# Do not show the gui, only save the png when gui.show() is called
gui = ti.GUI("velocity plot", (3*(nx+2),15*(ny+2)), show_gui=False)
img = np.concatenate((pcor_disp.to_numpy(), udiv_disp.to_numpy(), p_disp.to_numpy(), u_disp.to_numpy(), v_disp.to_numpy()), axis =1)
gui.set_image(img)
# Add captions to the output graph
# text_color = 0x3355ff
# gui.text(content = "P correction" , pos = (0.5,0.1), font_size = 20, color=text_color )
# gui.text(content = "Velocity div", pos = (0.5,0.3), font_size = 20, color=text_color )
# gui.text(content = "Pressure", pos = (0.5,0.5), font_size = 20, color=text_color )
# gui.text(content = "U velocity", pos = (0.5,0.7), font_size = 20, color=text_color )
# gui.text(content = "V velocity", pos = (0.5,0.9), font_size = 20, color=text_color )
filename = f'timestep{time_step:06}.png'
gui.show(filename)
# Write the fields every 10 time steps
if time_step % 10 == 0:
write_matrix(pcor, f'timestep{time_step:06}_pcor')
write_matrix(p, f'timestep{time_step:06}_p')
write_matrix(u, f'timestep{time_step:06}_u')
write_matrix(v, f'timestep{time_step:06}_v')
write_matrix(udiv, f'timestep{time_step:06}_udiv')