-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsave_cnn_feature.py
240 lines (214 loc) · 10.6 KB
/
save_cnn_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import print_function, absolute_import
import argparse
import json
import os
import re
import time
import h5py
import numpy as np
import torch
from torch.backends import cudnn
from reid import models
from reid.datasets import *
from reid.feature_extraction import extract_cnn_feature
from reid.utils.meters import AverageMeter
from reid.utils.get_loaders import *
def save_file(lines, args, root, if_created):
# write file
if args.data_type == 'tracking_det':
folder_name = root + f"/L0-features/det_{args.det_time}_features_{args.model}_{args.resume}"
if args.dataset == 'aic':
folder_name += f'_{args.det_type}'
elif args.data_type == 'reid':
folder_name = root + f"/L0-features/reid_trainval_features_{args.model}_{args.resume}"
elif args.data_type == 'tracking_gt': # only extract ground truth data from 'train' set
folder_name = root + f"/L0-features/gt_{args.det_time}_features_{args.model}_{args.resume}"
elif args.data_type == 'reid_test': # reid_test: query/gallery
folder_name = root + f"/L0-features/reid_{args.reid_test}_features_{args.model}_{args.resume}"
else:
raise Exception
if args.re:
folder_name += '_RE'
if args.crop:
folder_name += '_CROP'
os.makedirs(folder_name, exist_ok=True)
with open(osp.join(folder_name, 'args.json'), 'w') as fp:
json.dump(vars(args), fp, indent=1)
for cam in range(len(lines)):
output_fname = folder_name + '/features%d.h5' % (cam + 1)
if args.tracking_icams != 0 and cam + 1 != args.tracking_icams and args.tracking_icams is not None:
continue
if not lines[cam]:
continue
if not if_created[cam]:
with h5py.File(output_fname, 'w') as f:
mat_data = np.vstack(lines[cam])
f.create_dataset('emb', data=mat_data, dtype=float, maxshape=(None, None))
pass
if_created[cam] = 1
else:
with h5py.File(output_fname, 'a') as f:
mat_data = np.vstack(lines[cam])
f['emb'].resize((f['emb'].shape[0] + mat_data.shape[0]), axis=0)
f['emb'][-mat_data.shape[0]:] = mat_data
pass
return if_created
def extract_n_save(model, data_loader, args, root, num_cams, is_detection=True, use_fname=True, gt_type='reid'):
model.eval()
print_freq = 1000
batch_time = AverageMeter()
data_time = AverageMeter()
if_created = [0 for _ in range(num_cams)]
lines = [[] for _ in range(num_cams)]
end = time.time()
for i, (imgs, fnames, pids, cams) in enumerate(data_loader):
cams += 1
outputs = extract_cnn_feature(model, imgs)
for fname, output, pid, cam in zip(fnames, outputs, pids, cams):
if is_detection:
pattern = re.compile(r'c(\d+)_f(\d+)')
cam, frame = map(int, pattern.search(fname).groups())
# f_names[cam - 1].append(fname)
# features[cam - 1].append(output.numpy())
line = np.concatenate([np.array([cam, 0, frame]), output.numpy()])
else:
if use_fname:
pattern = re.compile(r'(\d+)_c(\d+)_f(\d+)')
pid, cam, frame = map(int, pattern.search(fname).groups())
else:
cam, pid = cam.numpy(), pid.numpy()
frame = -1 * np.ones_like(pid)
# line = output.numpy()
line = np.concatenate([np.array([cam, pid, frame]), output.numpy()])
lines[cam - 1].append(line)
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % print_freq == 0:
print('Extract Features: [{}/{}]\t'
'Time {:.3f} ({:.3f})\t'
'Data {:.3f} ({:.3f})\t'
.format(i + 1, len(data_loader),
batch_time.val, batch_time.avg,
data_time.val, data_time.avg))
if_created = save_file(lines, args, root, if_created)
lines = [[] for _ in range(num_cams)]
save_file(lines, args, root, if_created)
return
def main(args):
# seed
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.benchmark = True
tic = time.time()
if args.tracking_icams:
tracking_icams = [args.tracking_icams]
if args.data_type == 'tracking_det':
if args.dataset == 'duke_tracking':
dataset_dir = osp.join(args.data_dir, 'DukeMTMC', 'ALL_det_bbox', f'det_bbox_OpenPose_{args.det_time}')
elif args.dataset == 'aic_tracking':
dataset_dir = osp.join(args.data_dir, 'AIC19', 'ALL_det_bbox',
f'det_bbox_{args.det_type}_{args.det_time}', )
fps = None
use_fname = True
elif args.data_type == 'reid':
# args.det_time = 'trainval'
dataset_dir = None
fps = 1
use_fname = False
elif args.data_type == 'tracking_gt':
if args.dataset == 'aic':
args.det_time = 'trainval'
dataset_dir = None
fps = 60 if args.dataset == 'duke' else 10
use_fname = True
elif args.data_type == 'reid_test': # reid_test
dataset_dir = None
fps = 1
use_fname = False
else:
raise Exception
print(dataset_dir)
if args.dataset == 'duke_tracking':
dataset = DukeMTMC(dataset_dir, data_type=args.data_type, iCams=tracking_icams, fps=fps,
trainval=args.det_time == 'trainval')
elif args.dataset == 'aic_tracking': # aic
dataset = AI_City(dataset_dir, data_type=args.data_type, fps=fps, trainval=args.det_time == 'trainval',
gt_type=args.gt_type)
else:
dataset = datasets.create(args.dataset, args.data_dir)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize([args.height, args.width]),
T.Pad(10 * args.crop),
T.RandomCrop([args.height, args.width]),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=args.re), ])
# Create model
model = models.create(args.model, feature_dim=args.features, num_classes=0, norm=args.norm,
dropout=args.dropout, last_stride=args.last_stride, arch=args.arch)
# Load from checkpoint
assert args.resume, 'must provide resume directory'
resume_fname = osp.join(f'logs/{args.model}/{args.dataset}', args.resume, 'model_best.pth.tar')
model, start_epoch, best_top1 = checkpoint_loader(model, resume_fname)
print(f"=> Last epoch {start_epoch}")
model = nn.DataParallel(model).cuda()
model.eval()
toc = time.time() - tic
print('*************** initialization takes time: {:^10.2f} *********************\n'.format(toc))
tic = time.time()
if args.data_type == 'reid_test':
args.reid_test = 'query'
data_loader = DataLoader(Preprocessor(dataset.query, root=dataset.query_path, transform=test_transformer),
batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False)
extract_n_save(model, data_loader, args, dataset.root, dataset.num_cams,
is_detection=False, use_fname=use_fname)
args.reid_test = 'gallery'
data_loader = DataLoader(Preprocessor(dataset.gallery, root=dataset.gallery_path, transform=test_transformer),
batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False)
extract_n_save(model, data_loader, args, dataset.root, dataset.num_cams,
is_detection=False, use_fname=use_fname)
else:
data_loader = DataLoader(Preprocessor(dataset.train, root=dataset.train_path, transform=test_transformer),
batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False)
extract_n_save(model, data_loader, args, dataset.root, dataset.num_cams,
is_detection=args.data_type == 'tracking_det', use_fname=use_fname)
toc = time.time() - tic
print('*************** compute features takes time: {:^10.2f} *********************\n'.format(toc))
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Save re-ID features")
# data
parser.add_argument('--model', type=str, default='ide', choices=models.names())
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=['resnet50', 'densenet121'],
help='architecture for base network')
parser.add_argument('-d', '--dataset', type=str, default='duke', choices=datasets.names())
parser.add_argument('--data_type', type=str, default='reid',
choices=['tracking_det', 'reid', 'tracking_gt', 'reid_test'])
parser.add_argument('-b', '--batch-size', type=int, default=64, help="batch size")
parser.add_argument('-j', '--num-workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height, default: 256 for resnet*")
parser.add_argument('--width', type=int, default=128, help="input width, default: 128 for resnet*")
# model
parser.add_argument('--resume', type=str, default=None, metavar='PATH')
parser.add_argument('--features', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.5, help='0.5 for ide/pcb, 0 for triplet/zju')
parser.add_argument('-s', '--last_stride', type=int, default=2, choices=[1, 2])
parser.add_argument('--norm', action='store_true', help="normalize feat, default: False")
# misc
parser.add_argument('--data-dir', type=str, metavar='PATH', default=osp.expanduser('~/Data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH', default=None)
parser.add_argument('--det_time', type=str, metavar='PATH', default='val',
choices=['trainval_nano', 'trainval', 'train', 'val', 'test_all', 'test'])
parser.add_argument('--det_type', type=str, default='ssd', choices=['ssd', 'yolo'])
parser.add_argument('--gt_type', type=str, default='gt', choices=['gt', 'labeled'])
parser.add_argument('--tracking_icams', type=int, default=None, help="specify if train on single iCam")
parser.add_argument('--seed', type=int, default=None)
# data jittering
parser.add_argument('--re', type=float, default=0, help="random erasing")
parser.add_argument('--crop', action='store_true', help="resize then crop, default: False")
main(parser.parse_args())