-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtuner3.py
105 lines (74 loc) · 2.93 KB
/
tuner3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from keras.callbacks import CSVLogger
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential
from keras.models import Model
from keras.layers import Dropout, Flatten, Dense
from keras.wrappers.scikit_learn import KerasClassifier
# path to the model weights files.
full_model_weights_path = 'full_model.h5'
top_model_weights_path = 'demo/bottleneck_fc_model.h5'
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = 'data/train'
validation_data_dir = 'data/test'
nb_train_samples = 200
nb_validation_samples = 200
epochs = 1
batch_size = 5
X, y = make_classification(n_samples=80000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train,
y_train,
test_size=0.5)
# build the VGG16 network
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150,150,3))
print('Model loaded.')
# build a classifier model to put on top of the convolutional model
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))
# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)
# add the model on top of the convolutional base
# model.add(top_model)
model = Model(inputs=base_model.input, outputs=top_model(base_model.output))
# set the first 25 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:15]:
layer.trainable = False
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
model.summary()
csv_logger = CSVLogger('training.log')