-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path_VGG_16.py
95 lines (53 loc) · 2.3 KB
/
_VGG_16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
import pandas as pd
import cdsw
df_model = pd.read_csv("/home/cdsw/demo/training.log", delimiter=",")
df_classifier = pd.read_csv("/home/cdsw/demo/classifier_training.log", delimiter=",")
#print(plt.style.available)
#style.use('seaborn-talk') bmh, ggplot, seaborn-colorblind
style.use('bmh')
def train_model():
model_name = "Inception3"
# import model & train, with logs to hdfs folder
# models in /demo/models
# not run for demo since training will require 24 hours on CPU nodes
def plot_model_acc():
fig, ax = plt.subplots(nrows=1, ncols=1)
ax.set_facecolor('white')
ax.set_xlabel('Epoch')
ax.set_ylabel('Accuracy')
ax.set_title('Complete Model Accuracy')
fig.set_facecolor('white')
plt.plot( 'epoch', 'acc', label="Accuracy", data=df_model, markersize=12, color='skyblue', linewidth=1)
plt.plot( 'epoch', 'val_acc', label="Validation Accuracy", data=df_model, markersize=12, color='blue', linewidth=1)
legend = plt.legend(loc="lower right", facecolor='white', framealpha=1)
plt.show()
plot_model_acc()
def plot_model_loss():
fig, ax = plt.subplots(nrows=1, ncols=1)
ax.set_facecolor('white')
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.set_title('Complete Model Loss')
fig.set_facecolor('white')
plt.plot( 'epoch', 'loss', label="Loss", data=df_model, markersize=12, color='skyblue', linewidth=1)
plt.plot( 'epoch', 'val_loss', label="Validation Loss", data=df_model, markersize=12, color='blue', linewidth=1)
legend = plt.legend(loc="lower right", facecolor='white', framealpha=1)
plt.show()
plot_model_loss()
def plot_classifier_acc():
fig, ax = plt.subplots(nrows=1, ncols=1)
ax.set_facecolor('white')
ax.set_xlabel('Epoch')
ax.set_ylabel('Accuracy')
ax.set_title('Classifier Accuracy')
fig.set_facecolor('white')
plt.plot( 'epoch', 'acc', label="Accuracy", data=df_model, markersize=12, color='skyblue', linewidth=1)
plt.plot( 'epoch', 'val_acc', label="Validation Accuracy", data=df_model, markersize=12, color='blue', linewidth=1)
legend = plt.legend(loc="lower right", facecolor='white', framealpha=1)
plt.show()
plot_classifier_acc()
cdsw.track_metric("Accuracy", 0.9)
cdsw.track_metric("AUC", 0.89)