-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
363 lines (323 loc) · 13.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
from __future__ import division
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import numpy as np
import random
import math
import os
from argument import parser, print_args, create_logger
from tqdm import tqdm
from custom_models import *
from utils import *
# Model
class Attacks(nn.Module):
def __init__(self, basic_net, config):
super(Attacks, self).__init__()
self.basic_net = basic_net
self.epsilon_PGD = config['epsilon_PGD']
self.num_steps_PGD = config['num_steps_PGD']
self.step_size_PGD = config['step_size_PGD']
self.epsilon_MC = config['epsilon_MC']
self.num_steps_MC = config['num_steps_MC']
self.step_size_MC = config['step_size_MC']
self.rand = config['random_start']
assert config['loss_func'] == 'xent', 'Only xent supported for now.'
def perturb_PGD(self, inputs, targets, targeted = False):
x = inputs.detach()
if self.rand:
x = x + torch.zeros_like(x).uniform_(-self.epsilon_PGD, self.epsilon_PGD)
self.basic_net.eval()
for i in range(self.num_steps_PGD):
x.requires_grad_()
with torch.enable_grad():
_, _, logits = self.basic_net(x, _eval = True)
loss = F.cross_entropy(logits, targets, reduction='sum')
grad = torch.autograd.grad(loss, [x])[0]
if targeted:
x = x.detach() - self.step_size_PGD*torch.sign(grad.detach())
else:
x = x.detach() + self.step_size_PGD*torch.sign(grad.detach())
x = torch.min(torch.max(x, inputs - self.epsilon_PGD), inputs + self.epsilon_PGD)
x = torch.clamp(x, -1.0, 1.0)
self.basic_net.train()
return x
def targeted_MC(self, inputs, targets):
x = inputs.detach()
_, _, nat_logits = self.basic_net(x, _eval = True)
MC_targets = MC_labels(nat_logits, targets)
if self.rand:
x = x + torch.zeros_like(x).uniform_(-self.epsilon_MC, self.epsilon_MC)
self.basic_net.eval()
for i in range(self.num_steps_MC):
x.requires_grad_()
with torch.enable_grad():
_, _, logits = self.basic_net(x, _eval = True)
loss = F.cross_entropy(logits, MC_targets, reduction='sum')
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() - self.step_size_MC*torch.sign(grad.detach())
x = torch.min(torch.max(x, inputs - self.epsilon_MC), inputs + self.epsilon_MC)
x = torch.clamp(x, -1.0, 1.0)
self.basic_net.train()
return x, MC_targets
def perturb_CW(self, inputs, targets):
x = inputs.detach()
if self.rand:
x = x + torch.zeros_like(x).uniform_(-self.epsilon_PGD, self.epsilon_PGD)
self.basic_net.eval()
for i in range(self.num_steps_PGD):
x.requires_grad_()
with torch.enable_grad():
_, _, logits = self.basic_net(x, _eval = True)
loss = CW_loss(logits, targets)
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() + self.step_size_PGD*torch.sign(grad.detach())
x = torch.min(torch.max(x, inputs - self.epsilon_PGD), inputs + self.epsilon_PGD)
x = torch.clamp(x, -1.0, 1.0)
self.basic_net.train()
return x
# Training
def train(epoch):
logger.info('\nEpoch: %d' % epoch)
basic_net.train()
train_loss = 0
correct = 0
nat_correct = 0
total = 0
iterator = tqdm(trainloader, ncols=0, leave=False)
for batch_idx, (input1, target1) in enumerate(iterator):
input1, target1 = input1.to(device), target1.to(device)
kl = nn.KLDivLoss(reduction='none')
basic_net.eval()
adv_input1, input1_mclabel = attack.targeted_MC(input1, target1)
input1_mclabel = input1_mclabel.to('cpu')
input2_idx = classes_idx.get_batch(input1_mclabel)
input2, target2 = to_variable(trainset, input2_idx)
input2, target2 = input2.to(device), target2.to(device)
adv_input2 = attack.perturb_PGD(input2, target1, targeted = True)
basic_net.train()
input_all = torch.cat([adv_input1, input1, adv_input2], 0)
input_nat = torch.cat([input1, input2], 0)
features, x4s, outputs = basic_net(input_all)
features_nat, x4s_nat, outputs_nat = nat_net(input_nat, _eval = True)
output_all = torch.chunk(outputs, 3, dim = 0)
x4_all = torch.chunk(x4s, 3, dim = 0)
feature_all = torch.chunk(features, 3, dim = 0)
output_nat_all = torch.chunk(outputs_nat, 2, dim = 0)
feature_nat_all = torch.chunk(features_nat, 2, dim = 0)
if config['lb_smooth']:
loss = softmax_crossentropy_labelsmooth(output_all[0], target1, lb_smooth=config['lb_smooth'])
else:
loss = criterion_ori(output_all[0], target1)
triplet_loss_apn = triplet_loss(x4_all[0], x4_all[1], x4_all[2], config['margin_A_Ap_B'], config['lam2'])
if args.mart:
loss_mart = mart_loss(output_all[1], output_all[0], target1, kl)
loss = loss + loss_mart
student_map_1 = attention_map(feature_all[0])
teacher_map_1 = attention_map(feature_nat_all[0].detach().clone())
loss_distillation_1 = F.l1_loss(student_map_1, teacher_map_1)
loss = loss + loss_distillation_1
student_map_2 = attention_map(feature_all[2])
teacher_map_2 = attention_map(feature_nat_all[1].detach().clone())
loss_distillation_2 = F.l1_loss(student_map_2, teacher_map_2)
loss = loss + loss_distillation_2
loss = loss + config['lam1']*triplet_loss_apn
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = output_all[0].max(1)
_, nat_predicted = output_nat_all[0].max(1)
total += target1.size(0)
correct += predicted.eq(target1).sum().item()
nat_correct += nat_predicted.eq(target1).sum().item()
iterator.set_description(str(predicted.eq(target1).sum().item()/target1.size(0)))
scheduler.step()
acc = 100.*correct/total
nat_acc = 100.*nat_correct/total
logger.info('Train acc: %.3f' % acc)
logger.info('Train nat acc: %.3f' % nat_acc)
logger.info('Train loss: %.3f'% train_loss)
logger.info('Learning Rate: %f' % get_lr(optimizer))
state_latest = {
'net': basic_net.state_dict(),
'acc': acc,
'epoch': epoch+1,
}
if not os.path.isdir(args.ckpt_root):
os.mkdir(args.ckpt_root)
train_root = os.path.join(args.ckpt_root, 'ckpt_latest.t7')
torch.save(state_latest, train_root)
def test(epoch, loader):
global best_acc
logger.info('\nEpoch: %d' % epoch)
basic_net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
iterator = tqdm(loader, ncols=0, leave=False)
for batch_idx, (inputs, targets) in enumerate(iterator):
inputs, targets = inputs.to(device), targets.to(device)
with torch.no_grad():
_, _, outputs = basic_net(inputs, _eval = True)
loss = criterion_ori(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
iterator.set_description(str(predicted.eq(targets).sum().item()/targets.size(0)))
# Save checkpoint.
acc = 100.*correct/total
logger.info('Val acc: %.3f' % acc)
logger.info('Val loss: %.3f' % test_loss)
if acc > best_acc:
logger.info('Saving..')
state = {
'net': basic_net.state_dict(),
'acc': acc,
'epoch': epoch+1,
}
if not os.path.isdir(args.ckpt_root):
os.mkdir(args.ckpt_root)
test_root = os.path.join(args.ckpt_root, 'ckpt.t7')
torch.save(state, test_root)
best_acc = acc
def adv_test(epoch):
global best_adv_acc
logger.info('\nEpoch: %d' % epoch)
basic_net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
iterator = tqdm(testloader, ncols=0, leave=False)
for batch_idx, (inputs, targets) in enumerate(iterator):
inputs, targets = inputs.to(device), targets.to(device)
with torch.no_grad():
if config['adv_test_loss'] == 'ce':
adv_inputs = attack.perturb_PGD(inputs, targets)
elif config['adv_test_loss'] == 'cw':
adv_inputs = attack.perturb_CW(inputs, targets)
_, _, outputs = basic_net(adv_inputs, _eval = True)
loss = criterion_ori(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
iterator.set_description(str(predicted.eq(targets).sum().item()/targets.size(0)))
# Save checkpoint.
acc = 100.*correct/total
logger.info('Adv Val acc: %.3f' % acc)
logger.info('Adv Val loss: %.3f' % test_loss)
if acc > best_adv_acc:
logger.info('Saving..')
state = {
'net': basic_net.state_dict(),
'acc': acc,
'epoch': epoch+1,
}
if not os.path.isdir(args.ckpt_root):
os.mkdir(args.ckpt_root)
adv_test_root = os.path.join(args.ckpt_root, 'ckpt-adv.t7')
torch.save(state, adv_test_root)
best_adv_acc = acc
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
if __name__ == '__main__':
args = parser()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if not os.path.exists(args.log_root):
os.makedirs(args.log_root)
log_name = 'adv-trip'
logger = create_logger(args.log_root, log_name, 'info')
print_args(args, logger)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
best_adv_acc = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
logger.info('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
# Normalization messes with l-inf bounds.
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR10(root=args.data_path, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root=args.data_path, train=False, download=True, transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
#classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
logger.info('==> Building model..')
basic_net = WideResNet(depth=28, num_classes=10, widen_factor=10, dropRate=0.0)
basic_net = basic_net.to(device)
nat_net = WideResNet(depth=28, num_classes=10, widen_factor=10, dropRate=0.0)
nat_net = nat_net.to(device)
# From https://github.com/MadryLab/cifar10_challenge/blob/master/config.json
config = {
'margin_A_Ap_B': 0.03,
'loss_func': 'xent',
'epsilon_PGD': 8.0/255*2,
'num_steps_PGD': 10,
'step_size_PGD': 2.0/255*2,
'epsilon_MC': 8.0/255*2,
'num_steps_MC': 10,
'step_size_MC': 2.0/255*2,
'random_start': True,
'lam1': 2,
'lam2': 0.001,
'lb_smooth': 0.5,
'adv_test_loss': 'ce',
}
logger.info(config)
attack = Attacks(basic_net, config)
if device == 'cuda':
basic_net = torch.nn.DataParallel(basic_net)
nat_net = torch.nn.DataParallel(nat_net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
logger.info('==> Resuming from checkpoint..')
resume_dir = args.ckpt_root + '0'
assert os.path.isdir(resume_dir), 'Error: no checkpoint directory found!'
resume_root = os.path.join(resume_dir, 'ckpt_latest.t7')
checkpoint = torch.load(resume_root)
basic_net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
assert os.path.isdir(args.nat_root), 'Error: no checkpoint directory found!'
nat_root = os.path.join(args.nat_root, args.nat_file)
nat_ckpt = torch.load(nat_root)
nat_net.load_state_dict(nat_ckpt['net'])
if args.nat_init:
basic_net.load_state_dict(nat_ckpt['net'])
criterion_ori = nn.CrossEntropyLoss()
optimizer = optim.SGD(basic_net.parameters(), lr=args.lr, momentum=0.9, weight_decay=2e-4)
if args.resume:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones = [100], gamma = 1)
else:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones = [100, 150], gamma = 0.1)
classes_idx = i_class_idx(trainset.targets)
if args.adversarial_test:
test(start_epoch, testloader)
adv_test(start_epoch)
else:
for epoch in range(start_epoch, args.num_epoches):
classes_idx.get_idx()
train(epoch)
test(epoch, testloader)