-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgame.py
385 lines (313 loc) · 9.14 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Used the code from
# Copyright 2014 Google Inc. All rights reserved.
import random
import sys
import time
import math
# board size
N = 4
class Moves:
MOVE_LEFT = 'left'
MOVE_UP = 'up'
MOVE_RIGHT = 'right'
MOVE_DOWN = 'down'
class GameTracker:
def __init__(self):
self.no_moves = 0
self.st_time = time.time()
self.end_time = 0
self.max_tile = 2
self.score = 0
def getTimePerMove(self):
return (self.end_time - self.st_time)/self.no_moves
def getMaxTile(self):
return self.max_tile
def getNoOfMoves(self):
return self.no_moves
def getScore(self):
return self.score
class Board(object):
def __init__(self, grid=None):
self.over = False
self.gt = GameTracker()
self.enableRandomTile = True
if grid:
self.board = grid
self.is_custom_board = True
# check if the game is already over
if len(self.get_next_moves()) == 0:
self.over = True
else:
self.board = [[None] * N for i in range(N)]
self.is_custom_board = False
self.randomTile()
self.randomTile()
#Would be needed for Deep RL
def startGame():
if self.gt.score == 0 and not self.over:
self.gt = GameTracker()
#Would be needed for Deep RL
def startGame():
if self.gt.score == 0 and not self.over:
self.gt = GameTracker()
def rotateLeft(self, grid):
out = self.emptyGrid()
for c in range(N):
for r in range(N):
out[r][N-1-c] = grid[c][r]
return out
def rotateRight(self, grid):
out = self.emptyGrid()
for c in range(N):
for r in range(N):
out[N-1-r][c] = grid[c][r]
return out
def emptyGrid(self):
out = list()
for x in range(N):
col = list()
for y in range(N):
col.append(None)
out.append(col)
return out
def to_move(self, grid, direction):
out = self.emptyGrid()
if direction == Moves.MOVE_UP:
rot = 1
elif direction == Moves.MOVE_RIGHT:
rot = 2
elif direction == Moves.MOVE_DOWN:
rot = 3
else:
rot = 0
for i in range(rot):
grid = self.rotateLeft(grid)
score = 0
for r in range(N):
oc = 0
ic = 0
while ic < N:
if grid[ic][r] is None:
ic += 1
continue
out[oc][r] = grid[ic][r]
oc += 1
ic += 1
ic = 0
oc = 0
while ic < N:
if out[ic][r] is None:
break
if ic == N-1:
out[oc][r] = out[ic][r]
oc += 1
break
if out[ic][r] == out[ic+1][r]:
#out[oc][r] *= 2
out[oc][r] = 2*out[ic][r]
score += out[oc][r]
if self.gt.max_tile < out[oc][r]:
self.gt.max_tile = out[oc][r]
ic += 1
else:
out[oc][r] = out[ic][r]
ic += 1
oc += 1
while oc < N:
out[oc][r] = None
oc += 1
for i in range(rot):
out = self.rotateRight(out)
return out, score
def move(self, direction):
#print 'move', direction
next_board, got_score = self.to_move(self.board, direction)
moved = (next_board != self.board)
self.board = next_board
self.gt.score += got_score
if moved:
self.gt.no_moves = self.gt.no_moves + 1
if not self.randomTile() or len(self.get_next_moves()) == 0:
self.over = True
self.gt.end_time = time.time()
def canMove(self, direction, grid=None):
if not grid:
grid = self.board
return self.board != self.to_move(grid, direction)[0]
def get_empty_cells(self):
for i in range(N):
for j in range(N):
if self.board[i][j] is None:
yield i, j
def get_next_moves(self):
moves = []
if self.over:
return moves
for move in [Moves.MOVE_LEFT, Moves.MOVE_DOWN, Moves.MOVE_RIGHT, Moves.MOVE_UP]:
if self.canMove(move):
moves.append(move)
return moves
def randomTile(self):
if not self.enableRandomTile:
return True
cells = list(self.get_empty_cells())
if not cells:
return False
#print 'cells', cells
if random.random() < 0.9:
v = 2
else:
v = 4
cid = random.choice(cells)
#print cid
self.board[cid[0]][cid[1]] = v
return True
def enableRandomTile(rtile):
self.enableRandomTile = rtile
def show(self):
for i in range(N):
print ('|', end='')
for j in range(N):
if self.board[j][i]:
print (' %4d |' % self.board[j][i], end='')
else:
print (' . |', end='')
print("")
class GameManager():
def __init__(self, grid = None):
self.board = Board(grid)
def getCurrentState(self):
return self.board.board
def getScore(self):
return self.board.gt.score
def isOver(self):
return self.board.over
def getAvailableMoves(self):
return self.board.get_next_moves()
def makeMove(self, direction):
if self.isOver() or not self.board.canMove(direction):
return False
self.board.move(direction)
return True
def tryMove(self, grid, direction):
if not self.board.canMove(direction, grid=grid):
return grid, 0
return self.board.to_move(grid, direction)
def printState(self):
self.board.show()
def getGameTracker(self):
return self.board.gt
def getNoOfEmptyCells(self):
return len(list(self.board.get_empty_cells()))
def getEmptyCells(self):
return list(self.board.get_empty_cells())
def evalSmoothness(self, grid=None):
if grid is None:
grid = self.board.board
score_smooth = 0
N = len(grid)
for x in range(N-1):
for y in range(N-1):
s = 0
# s += abs((grid[x][y] or 2) - (grid[x+1][y] or 2))
# s += abs((grid[x][y] or 2) - (grid[x][y+1] or 2))
if grid[x][y] and grid[x+1][y]:
s += abs((math.log(grid[x][y])/math.log(2)) - (math.log(grid[x+1][y])/math.log(2)))
if grid[x][y] and grid[x][y+1]:
s += abs((math.log(grid[x][y])/math.log(2)) - (math.log(grid[x][y+1])/math.log(2)))
score_smooth -= s
return score_smooth
def evalFreeCells(self, grid=None):
if grid is None:
grid = self.board.board
empty_count = 0
for row in grid:
# one of them will be there
empty_count += row.count(None)
empty_count += row.count(0)
# print(empty_count)
# print(grid)
# return (16-empty_count)**2
if empty_count == 0:
return 0
return math.log(empty_count)
def evalMaxTile(self, grid=None):
if grid is None:
grid = self.board.board
return max([0 if tile is None else tile for row in grid for tile in row])
def evalMonotone(self, grid=None):
if grid is None:
grid = self.board.board
for x in range(N):
for y in range(N):
if grid[x][y] is None:
grid[x][y] = 0
L = R = U = D = 0
LR = UD = 0
for x in range(N):
m = 0
for y in range(N-1):
if grid[x][y] and grid[x][y] >= grid[x][y+1]:
m += 1
L += m ** 2 * 4
else:
L -= abs((grid[x][y] or 0)- (grid[x][y+1] or 0)) * m ** 2
m = 0
m = 0
for y in range(N-1):
if grid[x][y] <= grid[x][y+1] and grid[x][y+1]:
m += 1
R += m ** 2 * 4
else:
R -= abs((grid[x][y] or 0)- (grid[x][y+1] or 0)) * m ** 2
m = 0
LR += min(L, R)
L = R = 0
for y in range(N):
m = 0
for x in range(N-1):
if grid[x][y] and grid[x][y] >= grid[x+1][y]:
m += 1
else:
#U -= abs(to_idx[grid[x][y]] - to_idx[grid[x+1][y]]) ** 2
U -= abs((grid[x][y] or 0)- (grid[x+1][y] or 0)) * m ** 2
m = 0
m = 0
for x in range(N-1):
if grid[x][y] <= grid[x+1][y] and grid[x+1][y]:
m += 1
D += m ** 2 * 4
else:
D -= abs((grid[x][y] or 0)- (grid[x+1][y] or 0)) * m ** 2
m = 0
UD += min(U, D)
return LR + UD
def evalMonotone_simple(self, grid=None):
if grid is None:
grid = self.board.board
for x in range(N):
for y in range(N):
if grid[x][y] is None:
grid[x][y] = 0
L = R = U = D = 0
LR = UD = 0
for x in range(N):
for y in range(N-1):
cval = math.log(grid[x][y])/math.log(2) if grid[x][y] else 0
nval = math.log(grid[x][y+1])/math.log(2) if grid[x][y+1] else 0
if cval > nval:
L += nval - cval
else:
R += cval - nval
LR = max(L, R)
L = R = 0
for y in range(N):
for x in range(N-1):
cval = math.log(grid[x][y])/math.log(2) if grid[x][y] else 0
nval = math.log(grid[x+1][y])/math.log(2) if grid[x+1][y] else 0
if cval > nval:
U += nval - cval
else:
D += cval - nval
UD = max(U, D)
return (LR + UD)