-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata.py
181 lines (151 loc) · 6.78 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
from PIL import Image
import torch.utils.data as data
from torchvision.transforms import transforms
class ObjDataset(data.Dataset):
def __init__(self, images, gts, trainsize):
self.trainsize = trainsize
self.images = images
self.gts = gts
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.filter_files()
self.size = len(self.images)
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
image = self.img_transform(image)
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
# return img.convert('1')
return img.convert('L')
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
class ValObjDataset(data.Dataset):
def __init__(self, images, gts, trainsize):
self.trainsize = trainsize
self.images = images
self.gts = gts
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.filter_files()
self.size = len(self.images)
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
image = self.img_transform(image)
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
# return img.convert('1')
return img.convert('L')
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
def image_loader(image_root, gt_root, batch_size, image_size, split=0.8, labeled_ratio=0.05):
images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')]
gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.jpg') or f.endswith('.png')]
train_images = images[0:int(len(images) * split)]
val_images = images[int(len(images) * split):]
train_gts = gts[0:int(len(images) * split)]
val_gts = gts[int(len(images) * split):]
labeled_train_images = train_images[0:int(len(train_images) * labeled_ratio)]
labeled_train_images_1 = labeled_train_images[0:int(len(labeled_train_images) * 0.5)]
labeled_train_images_2 = labeled_train_images[int(len(labeled_train_images) * 0.5):]
unlabeled_train_images = train_images[int(len(train_images) * labeled_ratio):]
labeled_train_gts = train_gts[0:int(len(train_gts) * labeled_ratio)]
labeled_train_gts_1 = labeled_train_gts[0:int(len(labeled_train_gts) * 0.5)]
labeled_train_gts_2 = labeled_train_gts[int(len(labeled_train_gts) * 0.5):]
unlabeled_train_gts = train_gts[int(len(train_gts) * labeled_ratio):]
labeled_train_dataset_1 = ObjDataset(labeled_train_images_1, labeled_train_gts_1, image_size)
labeled_train_dataset_2 = ObjDataset(labeled_train_images_2, labeled_train_gts_2, image_size)
unlabeled_train_dataset = ObjDataset(unlabeled_train_images, unlabeled_train_gts, image_size)
val_dataset = ValObjDataset(val_images, val_gts, image_size)
labeled_data_loader_1 = data.DataLoader(dataset=labeled_train_dataset_1,
batch_size=batch_size,
num_workers=1,
pin_memory=True,
shuffle=True)
labeled_data_loader_2 = data.DataLoader(dataset=labeled_train_dataset_2,
batch_size=batch_size,
num_workers=1,
pin_memory=True,
shuffle=True)
unlabeled_data_loader = data.DataLoader(dataset=unlabeled_train_dataset,
batch_size=batch_size,
num_workers=1,
pin_memory=True,
shuffle=True)
val_loader = data.DataLoader(dataset=val_dataset,
batch_size=batch_size,
num_workers=1,
pin_memory=True,
shuffle=False)
return labeled_data_loader_1, labeled_data_loader_2, unlabeled_data_loader, val_loader