-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
27 lines (24 loc) · 1.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
from torch import utils
from torchvision import datasets, transforms
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
mnist_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
])
def mnist(batch_size=50, shuffle=True, transform=mnist_transform, path='./MNIST_data'):
train_data = datasets.MNIST(path, train=True, download=True, transform=transform)
test_data = datasets.MNIST(path, train=False, download=True, transform=transform)
train_loader = utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=shuffle)
test_loader = utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=shuffle)
return train_loader, test_loader
def plot_mnist(images, shape):
fig = plt.figure(figsize=shape[::-1], dpi=80)
for j in range(1, len(images) + 1):
ax = fig.add_subplot(shape[0], shape[1], j)
ax.matshow(images[j - 1, 0, :, :], cmap = matplotlib.cm.binary)
plt.xticks(np.array([]))
plt.yticks(np.array([]))
plt.show()