-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunning.py
48 lines (38 loc) · 1.81 KB
/
running.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import logging
import sys
import os
import json
from utils import utils
from datetime import datetime
logger = logging.getLogger('__main__')
def setup(args):
"""Prepare training session: read configuration from file (takes precedence), create directories.
Input:
args: arguments object from argparse
Returns:
config: configuration dictionary
"""
config = args.__dict__ # configuration dictionary
# Create output directory
initial_timestamp = datetime.now()
output_dir = config['output_dir']
if not os.path.isdir(output_dir):
raise IOError(
"Root directory '{}', where the directory of the experiment will be created, must exist".format(output_dir))
output_dir = os.path.join(output_dir, config['experiment_name'])
formatted_timestamp = initial_timestamp.strftime("%Y-%m-%d_%H-%M-%S")
config['initial_timestamp'] = formatted_timestamp
# if (not config['no_timestamp']) or (len(config['experiment_name']) == 0):
# rand_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=3))
# output_dir += "_" + formatted_timestamp + "_" + rand_suffix
config['output_dir'] = output_dir
config['save_dir'] = os.path.join(output_dir, 'checkpoints')
config['model_dir'] = os.path.join(output_dir, 'complete_saved_model')
config['pred_dir'] = os.path.join(output_dir, 'predictions')
#config['tensorboard_dir'] = os.path.join(output_dir, 'tb_summaries')
utils.create_dirs([config['save_dir'], config['pred_dir']]) #, config['tensorboard_dir']
# Save configuration as a (pretty) json file
with open(os.path.join(output_dir, 'configuration.json'), 'w') as fp:
json.dump(config, fp, indent=4, sort_keys=True)
logger.info("Stored configuration file in '{}'".format(output_dir))
return config