-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
63 lines (45 loc) · 1.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import logging
logging.basicConfig(format='%(asctime)s | %(levelname)s : %(message)s', level=logging.INFO)
logger = logging.getLogger()
logger.info("Loading packages...")
from running import setup
from options import Options
import argparse
import numpy as np
import pandas as pds
import random
import time
import os
from datasets.data import data_factory_fun
from models.model import model_factory
from utils.datagen import UnetGen
from datasets import event as evt
from utils import postprocess
import tensorflow as tf
from tensorflow.keras import backend as K
def main(config):
total_start_time = time.time()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=config['GPU']
tf.config.list_physical_devices('GPU')
if config['seed'] is not None:
os.environ['PYTHONHASHSEED']= '0'
np.random.seed(config['seed'])
random.seed(config['seed'])
tf.random.set_seed(config['seed'])
data = data_factory_fun(config)
model, callbacks = model_factory(config, data)
if (config['train'] == 'True') or (config['pretrain'] == 'True'):
train_gen = UnetGen('train', config, data)
val_gen = UnetGen('val', config, data)
model.fit(train_gen, validation_data=val_gen,epochs=config['epochs'],callbacks=callbacks)
model.save(config['model_dir'])
if config['test'] == 'True':
model = tf.keras.models.load_model(conf['model_dir'])
test_gen = UnetGen('test', config, data)
model.evaluate(test_gen, verbose=1)
TP, FN, FP, detected, result = postprocess.predict(data, model, config)
if __name__ == '__main__':
args = Options().parse() # `argsparse` object
config = setup(args) # configuration dictionary
main(config)