forked from DongjunLee/vae-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
84 lines (61 loc) · 2.26 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#-*- coding: utf-8 -*-
import argparse
import os
import matplotlib
import matplotlib.pyplot as plt
from hbconfig import Config
import numpy as np
import tensorflow as tf
from model import Model
def generate(latent_vector):
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"latent_vector": latent_vector},
num_epochs=1,
shuffle=False)
estimator = _make_estimator()
result = estimator.predict(input_fn=predict_input_fn)
predictions = [image["prediction"] for image in list(result)]
return predictions
def _make_estimator():
params = tf.contrib.training.HParams(**Config.model.to_dict())
# Using CPU
run_config = tf.contrib.learn.RunConfig(
model_dir=Config.train.model_dir,
session_config=tf.ConfigProto(
device_count={'GPU': 0}
))
model = Model()
return tf.estimator.Estimator(
model_fn=model.model_fn,
model_dir=Config.train.model_dir,
params=params,
config=run_config)
def main():
# Sample noise vectors from N(0, 1)
latent_vector = np.random.normal(size=[Config.model.batch_size, Config.model.z_dim]).astype(np.float32)
generated_x = generate(latent_vector)
generated_x = np.array(generated_x)
n = np.sqrt(Config.model.batch_size).astype(np.int32)
w = h = 28
img = np.empty((h*n, w*n))
for i in range(n):
for j in range(n):
img[i*h:(i+1)*h, j*w:(j+1)*w] = generated_x[i*n+j, :].reshape(28, 28)
plt.figure(figsize=(8, 8))
plt.imshow(img, cmap='gray_r')
plt.savefig(f"generate_image_z_{Config.model.z_dim}_{Config.model.batch_size}.png")
plt.close()
print("success to generate image.")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, default='config',
help='config file name')
parser.add_argument('--batch_size', type=int, default=20,
help='set generate image count (default 20)')
args = parser.parse_args()
Config(args.config)
Config.model.batch_size = args.batch_size
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
main()