-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
237 lines (211 loc) · 9.45 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Dataset related classes and methods for ViT training and validation
Cifar10, Cifar100 and ImageNet2012 are supported
"""
import os
import math
import re
import paddle
from paddle.io import Dataset
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.vision import transforms
from paddle.vision import datasets
from paddle.vision import image_load
from augment import auto_augment_policy_original
from augment import AutoAugment
from transforms import RandomHorizontalFlip
from random_erasing import RandomErasing
IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg']
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def find_images_and_targets(folder, types=IMG_EXTENSIONS, class_to_idx=None, leaf_name_only=True, sort=True):
labels = []
filenames = []
for root, subdirs, files in os.walk(folder, topdown=False, followlinks=True):
rel_path = os.path.relpath(root, folder) if (root != folder) else ''
label = os.path.basename(rel_path) if leaf_name_only else rel_path.replace(os.path.sep, '_')
for f in files:
base, ext = os.path.splitext(f)
if ext.lower() in types:
filenames.append(os.path.join(root, f))
labels.append(label)
if class_to_idx is None:
# building class index
unique_labels = set(labels)
sorted_labels = list(sorted(unique_labels, key=natural_key))
class_to_idx = {c: idx for idx, c in enumerate(sorted_labels)}
images_and_targets = [(f, class_to_idx[l]) for f, l in zip(filenames, labels) if l in class_to_idx]
if sort:
images_and_targets = sorted(images_and_targets, key=lambda k: natural_key(k[0]))
return images_and_targets, class_to_idx
class ImageNet2012Dataset(Dataset):
def __init__(self, file_folder, mode="train", transform=None):
class_to_idx = None
root = os.path.join(file_folder, mode)
images, class_to_idx = find_images_and_targets(root, class_to_idx=class_to_idx)
if len(images) == 0:
raise RuntimeError(f'Found 0 images in subfolders of {root}. '
f'Supported image extensions are {", ".join(IMG_EXTENSIONS)}')
self.root = root
self.samples = images
self.imgs = self.samples
self.class_to_idx = class_to_idx
self.transform = transform
print(f'----- Imagenet2012 image {mode} list len = {len(self.samples)}')
def __getitem__(self, index):
path, target = self.samples[index]
img = image_load(path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if target is None:
target = paddle.zeros(1).long()
return img, target
def __len__(self):
return len(self.samples)
def get_train_transforms(config):
""" Get training transforms
For training, a RandomResizedCrop is applied, then normalization is applied with
[0.5, 0.5, 0.5] mean and std. The input pixel values must be rescaled to [0, 1.]
Outputs is converted to tensor
Args:
config: configs contains IMAGE_SIZE, see config.py for details
Returns:
transforms_train: training transforms
"""
aug_op_list = []
# STEP1: random crop and resize
aug_op_list.append(
transforms.RandomResizedCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
scale=(0.05, 1.0), interpolation='bicubic'))
# STEP2: auto_augment or color jitter
if config.TRAIN.AUTO_AUGMENT:
policy = auto_augment_policy_original()
auto_augment = AutoAugment(policy)
aug_op_list.append(auto_augment)
else:
jitter = (float(config.TRAIN.COLOR_JITTER), ) * 3
aug_op_list.append(transforms.ColorJitter(*jitter))
# STEP3: other ops
aug_op_list.append(transforms.ToTensor())
aug_op_list.append(transforms.Normalize(mean=config.DATA.IMAGENET_MEAN,
std=config.DATA.IMAGENET_STD))
# STEP4: random erasing
if config.TRAIN.RANDOM_ERASE_PROB > 0.:
random_erasing = RandomErasing(prob=config.TRAIN.RANDOM_ERASE_PROB,
mode=config.TRAIN.RANDOM_ERASE_MODE,
max_count=config.TRAIN.RANDOM_ERASE_COUNT,
num_splits=config.TRAIN.RANDOM_ERASE_SPLIT)
aug_op_list.append(random_erasing)
# Final: compose transforms and return
transforms_train = transforms.Compose(aug_op_list)
return transforms_train
def get_val_transforms(config):
""" Get training transforms
For validation, image is first Resize then CenterCrop to image_size.
Then normalization is applied with [0.5, 0.5, 0.5] mean and std.
The input pixel values must be rescaled to [0, 1.]
Outputs is converted to tensor
Args:
config: configs contains IMAGE_SIZE, see config.py for details
Returns:
transforms_train: training transforms
"""
scale_size = int(math.floor(config.DATA.IMAGE_SIZE / config.DATA.CROP_PCT))
transforms_val = transforms.Compose([
transforms.Resize(scale_size, interpolation='bicubic'),
transforms.CenterCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD),
])
return transforms_val
def get_dataset(config, mode='train', transform=None):
""" Get dataset from config and mode (train/val)
Returns the related dataset object according to configs and mode(train/val)
Args:
config: configs contains dataset related settings. see config.py for details
Returns:
dataset: dataset object
"""
assert mode in ['train', 'val']
if config.DATA.DATASET == "cifar10":
if mode == 'train':
if transform is None:
transform = get_train_transforms(config)
dataset = datasets.Cifar10(mode=mode, transform=transform)
else:
mode = 'test'
if transform is None:
transform = get_val_transforms(config)
dataset = datasets.Cifar10(mode=mode, transform=transform)
elif config.DATA.DATASET == "cifar100":
if mode == 'train':
if transform is None:
transform = get_train_transforms(config)
dataset = datasets.Cifar100(mode=mode, transform=transform)
else:
mode = 'test'
if transform is None:
transform = get_val_transforms(config)
dataset = datasets.Cifar100(mode=mode, transform=transform)
elif config.DATA.DATASET == "imagenet2012" or config.DATA.DATASET == "imagenetlight":
if mode == 'train':
if transform is None:
transform = get_train_transforms(config)
dataset = ImageNet2012Dataset(config.DATA.DATA_PATH,
mode=mode,
transform=transform)
else:
if transform is None:
transform = get_val_transforms(config)
dataset = ImageNet2012Dataset(config.DATA.DATA_PATH,
mode=mode,
transform=transform)
else:
raise NotImplementedError(
"[{config.DATA.DATASET}] Only cifar10, cifar100, imagenet2012 are supported now")
return dataset
def get_dataloader(config, dataset, mode='train', multi_process=False, drop_last=False):
"""Get dataloader with config, dataset, mode as input, allows multiGPU settings.
Multi-GPU loader is implements as distributedBatchSampler.
Args:
config: see config.py for details
dataset: paddle.io.dataset object
mode: train/val
multi_process: if True, use DistributedBatchSampler to support multi-processing
Returns:
dataloader: paddle.io.DataLoader object.
"""
if mode == 'train':
batch_size = config.DATA.BATCH_SIZE
else:
batch_size = config.DATA.BATCH_SIZE_EVAL
if multi_process is True:
sampler = DistributedBatchSampler(dataset,
batch_size=batch_size,
shuffle=(mode == 'train'),
drop_last=drop_last)
dataloader = DataLoader(dataset,
batch_sampler=sampler,
num_workers=config.DATA.NUM_WORKERS)
else:
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=config.DATA.NUM_WORKERS,
shuffle=(mode == 'train'),
drop_last=drop_last)
return dataloader