-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathReadFeature.m
61 lines (59 loc) · 1.74 KB
/
ReadFeature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
fid = fopen('G:\face-CASIA-WebFace\list.txt');
C = textscan(fid, '%s %d');
fclose(fid);
% C{1} = C{1}(1:2000);
% C{2} = C{2}(1:2000);
fid = fopen('G:\face-CASIA-WebFace\sim_label.txt');
C2 = textscan(fid, '%d');
% C2{1} = C2{1}(1:2000);
fclose(fid);
meanC = caffe('read_mean','D:\ThirdPartyLibrary\caffe\examples\siamese\mean.proto');
matcaffe_init(1,'D:\ThirdPartyLibrary\caffe\examples\siamese\mnist_siamese_deploy.prototxt','D:\ThirdPartyLibrary\caffe\examples\siamese\siamese_iter_86000.caffemodel');
num = length(C{2});
label = C2{1}(1:num/2);
% num = floor(num /80) * 2;
AllFeature = zeros(320,num);
for i = 1 : floor(num/100)
disp([i floor(num/100)]);
J = zeros(100,100,1,100,'single');
for j = 1 : 100
I = imread(C{1}{(i-1)*100+j});
% I = I(end:-1:1,:);
I = I';
% I = I(end:-1:1,:);
I = single(I) - meanC;
J(:,:,1,j) = I / 128;
% J(:,:,1,j) = I;
end;
H={J};
f = caffe('forward',H);
f = f{1};
AllFeature(:,(i-1)*100+1:i*100) = reshape(f,[size(AllFeature,1),100]);
end;
J = zeros(100,100,1,100,'single');
for j = 1 : num - floor(num/100) * 100
I = imread(C{1}{floor(num/100) * 100+j});
I = single(I') - meanC;
J(:,:,1,j) = I / 128;
end;
H={J};
f = caffe('forward',H);
f=f{1};
f = reshape(f,[size(AllFeature,1),100]);
AllFeature(:,floor(num/100) * 100+1:num) = f(:,1 : num - floor(num/100) * 100);
thresh1 = [];
thresh2 = [];
p1=1;
p2=1;
num = floor(size(AllFeature,2) / 2);
normX = AllFeature';
for i = 1:num
if C{2}(i) == C{2}(num+i)
thresh1 = [thresh1;pdist2(normX(i,:), normX(num+i,:))];
p1=p1+1;
else
thresh2 = [thresh2;pdist2(normX(i,:), normX(num+i,:))];
p2=p2+1;
end;
end;
mean(thresh1) / 4 + mean(max(100 - thresh2, 0)) / 4