-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevalEdgeResults.m
60 lines (50 loc) · 1.77 KB
/
evalEdgeResults.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [ODS, OIS, ODT, AP, R50] = evalEdgeResults(model, subfolder, mode)
% evaluate current edge det model on bsds
% subfolder indexes the current iteration of exp
%% check params
if nargin < 3
mode = 'fast';
end
% use bsds param
param = globalParam('bsds');
% reset model param (make sure sharpen is open during training)
model.opts.sharpen = 2;
model.opts.multiscale = 1;
model.opts.nms = 1;
%% setup folder structure (bsds is a special case)
imgFolder = fullfile(param.imgPath, 'test');
gtFolder = fullfile(param.edgePath, 'Groundtruth', 'test');
resFolder = fullfile(param.edgePath, subfolder);
if ~exist(resFolder, 'dir')
mkdir(resFolder);
end
%% run the detector
imgList = dir(fullfile(imgFolder, '*.jpg'));
parfor i=1:length(imgList)
outfile = fullfile(resFolder, [imgList(i).name(1:end-4) '.png']);
if exist(outfile, 'file'), continue; end
img = imread(fullfile(imgFolder, imgList(i).name));
edgeMap = edgesDetect(img, img, model);
imwrite(edgeMap, outfile);
end
%% run the benchmark
if strcmp(mode, 'fast')
tic
% fast and less accurate evaluation
[ODS,~,~,ODT,OIS,~,~,AP,R50] = edgesEvalDirFast('resDir', resFolder,...
'gtDir', gtFolder, 'thrs', 39);
toc
fprintf('ODS: %0.3f, OIS: %0.3f, AP: %0.3f\n', ODS, OIS, AP)
if( 1 ), figure(1); edgesEvalPlot(resFolder, sprintf('%s', strrep(subfolder, '_', ' '))); end
elseif strcmp(mode, 'accurate')
tic
% slow and accurate evaluation
[ODS,~,~,ODT,OIS,~,~,AP,R50] = edgesEvalDir('resDir', resFolder,...
'gtDir', gtFolder, 'thrs', 99);
toc
fprintf('ODS: %0.3f, OIS: %0.3f, AP: %0.3f\n', ODS, OIS, AP)
if( 1 ), figure(1); edgesEvalPlot(resFolder, sprintf('%s', strrep(subfolder, '_', ' '))); end
else
fprintf('Mode not recognized\n');
ODS=0; OIS=0; ODT=0; AP=0; R50=0;
end