-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_train_dense.py
441 lines (386 loc) · 19.6 KB
/
single_train_dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
import logging
import itertools
import json
import torch
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from setproctitle import setproctitle
from bisect import bisect
from torch.nn import functional as F
from datetime import datetime
import numpy as np
from data.dataset import VisDialDataset
from visdial.encoders import Encoder
from visdial.decoders import Decoder
from visdial.model import EncoderDecoderModel
from visdial.utils.checkpointing import CheckpointManager, load_checkpoint
from single_evaluation import Evaluation
class SVG_dense(object):
def __init__(self, hparams):
self.hparams = hparams
self._logger = logging.getLogger(__name__)
np.random.seed(hparams.random_seed[0])
torch.manual_seed(hparams.random_seed[0])
torch.cuda.manual_seed_all(hparams.random_seed[0])
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
self.device = (
torch.device("cuda", self.hparams.gpu_ids[0])
if self.hparams.gpu_ids[0] >= 0
else torch.device("cpu")
)
setproctitle(hparams.dataset_version + '_' + hparams.model_name + '_' + str(hparams.random_seed[0]))
# def _build_data_process(self):
def _build_dataloader(self):
# =============================================================================
# SETUP DATASET, DATALOADER
# =============================================================================
old_split = "train" if self.hparams.dataset_version == "0.9" else None
self.train_dataset = VisDialDataset(
self.hparams,
overfit=self.hparams.overfit,
split="train",
old_split = old_split,
sample_flag=True
)
collate_fn = None
if "dan" in self.hparams.img_feature_type:
collate_fn = self.train_dataset.collate_fn
self.train_dataloader = DataLoader(
self.train_dataset,
batch_size=self.hparams.train_batch_size,
num_workers=self.hparams.cpu_workers,
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
self.valid_dataset = VisDialDataset(
self.hparams,
overfit=self.hparams.overfit,
split="val",
old_split=None
)
self.valid_dataloader = DataLoader(
self.valid_dataset,
batch_size=self.hparams.eval_batch_size,
num_workers=self.hparams.cpu_workers,
drop_last=False,
collate_fn=collate_fn
)
###load ndcg label list
samplefile = open("/data1/dzhao/rva/data/visdial_1.0_train_dense_sample.json", 'r')
self.sample = json.loads(samplefile.read())
samplefile.close()
self.ndcg_id_list = []
for idx in range(len(self.sample)):
self.ndcg_id_list.append(self.sample[idx]['image_id'])
print("""
# -------------------------------------------------------------------------
# DATALOADER FINISHED
# -------------------------------------------------------------------------
""")
def _build_model(self):
# =============================================================================
# MODEL : Encoder, Decoder
# =============================================================================
print('\t* Building model...')
# Pass vocabulary to construct Embedding layer.
encoder = Encoder(self.hparams, self.train_dataset.vocabulary)
decoder = Decoder(self.hparams, self.train_dataset.vocabulary)
print("Encoder: {}".format(self.hparams.encoder))
print("Decoder: {}".format(self.hparams.decoder))
# New: Initializing word_embed using GloVe
if self.hparams.glove_npy != '':
encoder.word_embed.weight.data = torch.from_numpy(np.load(self.hparams.glove_npy))
print("Loaded glove vectors from {}".format(self.hparams.glove_npy))
# Share word embedding between encoder and decoder.
decoder.word_embed = encoder.word_embed
# Wrap encoder and decoder in a model.
self.model = EncoderDecoderModel(encoder, decoder)
print("Total number of paramerters in networks is {} ".format(sum(x.numel() for x in self.model.parameters())))
self.model = self.model.to(self.device)
# Use Multi-GPUs
if -1 not in self.hparams.gpu_ids and len(self.hparams.gpu_ids) > 1:
self.model = nn.DataParallel(self.model, self.hparams.gpu_ids)
# =============================================================================
# CRITERION
# =============================================================================
if "disc" in self.hparams.decoder:
self.criterion = nn.CrossEntropyLoss()
self.criterion_bce = nn.BCEWithLogitsLoss()
elif "gen" in self.hparams.decoder:
self.criterion = nn.CrossEntropyLoss(ignore_index=self.train_dataset.vocabulary.PAD_INDEX)
# Total Iterations -> for learning rate scheduler
if self.hparams.training_splits == "trainval":
self.iterations = (len(self.train_dataset) + len(self.valid_dataset)) // self.hparams.virtual_batch_size
else:
self.iterations = len(self.train_dataset) // self.hparams.virtual_batch_size
# =============================================================================
# OPTIMIZER, SCHEDULER
# =============================================================================
def lr_lambda_fun(current_iteration: int) -> float:
"""Returns a learning rate multiplier.
Till `warmup_epochs`, learning rate linearly increases to `initial_lr`,
and then gets multiplied by `lr_gamma` every time a milestone is crossed.
"""
current_epoch = float(current_iteration) / self.iterations
if current_epoch <= self.hparams.warmup_epochs:
alpha = current_epoch / float(self.hparams.warmup_epochs)
return self.hparams.warmup_factor * (1.0 - alpha) + alpha
else:
# return_val = 1.0
# if current_epoch >= self.hparams.lr_milestones[0] and current_epoch < self.hparams.lr_milestones2[0]:
# idx = bisect(self.hparams.lr_milestones, current_epoch)
# return_val = pow(self.hparams.lr_gamma, idx)
# elif current_epoch >= self.hparams.lr_milestones2[0]:
# idx = bisect(self.hparams.lr_milestones2, current_epoch)
# return_val = self.hparams.lr_gamma * pow(self.hparams.lr_gamma2, idx)
# return return_val
idx = bisect(self.hparams.lr_milestones, current_epoch)
return pow(self.hparams.lr_gamma, idx)
if self.hparams.lr_scheduler == "LambdaLR":
self.optimizer = optim.Adam(self.model.parameters(), lr=self.hparams.initial_lr)
self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lr_lambda_fun)
else:
raise NotImplementedError
print(
"""
# -------------------------------------------------------------------------
# Model Build Finished
# -------------------------------------------------------------------------
"""
)
def _setup_training(self):
# if self.hparams.save_dirpath == 'checkpoints/':
self.save_dirpath = os.path.join(self.hparams.root_dir, self.hparams.save_dirpath)
self.summary_writer = SummaryWriter(self.save_dirpath)
self.checkpoint_manager = CheckpointManager(
self.model, self.optimizer, self.save_dirpath, hparams=self.hparams
)
# If loading from checkpoint, adjust start epoch and load parameters.
if self.hparams.load_pthpath == "":
self.start_epoch = 1
else:
# "path/to/checkpoint_xx.pth" -> xx
# self.start_epoch = int(self.hparams.load_pthpath.split("_")[-1][:-4])
self.start_epoch = 1
model_state_dict, optimizer_state_dict = load_checkpoint(self.hparams.load_pthpath)
if isinstance(self.model, nn.DataParallel):
self.model.module.load_state_dict(model_state_dict)
else:
self.model.load_state_dict(model_state_dict)
# self.optimizer.load_state_dict(optimizer_state_dict)
self.previous_model_path = self.hparams.load_pthpath
print("Loaded model from {}".format(self.hparams.load_pthpath))
print(
"""
# -------------------------------------------------------------------------
# Setup Training Finished
# -------------------------------------------------------------------------
"""
)
def _loss_fn(self, epoch, batch, output):
target = (batch["ans_ind"] if "disc" in self.hparams.decoder else batch["ans_out"])
batch_loss = self.criterion(output.view(-1, output.size(-1)), target.view(-1).to(self.device))
return batch_loss
def get_1round_idx_batch_data(self, batch, rnd, idx): ##to get 1 round data with batch_size = 1
temp_train_batch = {}
for key in batch:
if key in ['img_feat']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2].to(self.device)
elif key in ['ques', 'opt', 'ques_len', 'opt_len', 'ans_ind']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2][:, rnd].to(self.device)
elif key in ['hist_len', 'hist']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2][:, :rnd + 1].to(self.device)
else:
pass
return temp_train_batch
def get_1round_idx_batch_data_forrva(self, batch, rnd, idx): ##to get 1 round data with batch_size = 1
temp_train_batch = {}
for key in batch:
if key in ['img_feat']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2].to(self.device)
elif key in ['ans_ind']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2][:, rnd].to(self.device)
elif key in ['ques', 'ques_len', 'hist_len', 'hist', 'opt', 'opt_len']:
temp_train_batch[key] = batch[key][idx * 2:idx * 2 + 2][:, :rnd + 1].to(self.device)
else:
pass
return temp_train_batch
def train(self):
self._build_dataloader()
self._build_model()
self._setup_training()
# Evaluation Setup
evaluation = Evaluation(self.hparams, model=self.model, split="val")
# Forever increasing counter to keep track of iterations (for tensorboard log).
global_iteration_step = (self.start_epoch - 1) * self.iterations
running_loss = 0.0 # New
train_begin = datetime.utcnow() # New
print(
"""
# -------------------------------------------------------------------------
# Model Train Starts (NEW)
# -------------------------------------------------------------------------
"""
)
for epoch in range(self.start_epoch, self.hparams.num_epochs):
self.model.train()
# -------------------------------------------------------------------------
# ON EPOCH START (combine dataloaders if training on train + val)
# -------------------------------------------------------------------------
if self.hparams.training_splits == "trainval":
combined_dataloader = itertools.chain(self.train_dataloader, self.valid_dataloader)
else:
combined_dataloader = itertools.chain(self.train_dataloader)
print(f"\nTraining for epoch {epoch}:", "Total Iter:", self.iterations)
tqdm_batch_iterator = tqdm(combined_dataloader)
accumulate_batch = 0 # taesun New
loss_function = self.hparams.loss_function
for i, batch in enumerate(tqdm_batch_iterator):
# for key in batch:
# batch[key] = batch[key].to(device)
##### find the round
batchsize = batch['img_ids'].shape[0]
grad_dict = {}
self.optimizer.zero_grad()
for idx in range(int(batchsize / 2)):
for b in range(2): # here is because with the batch_size = 1 will raise error
sample_idx = self.ndcg_id_list.index(batch['img_ids'][idx * 2 + b].item())
final_round = self.sample[sample_idx]['round_id'] - 1
rnd = final_round
##for 1 round
#temp_train_batch = get_1round_idx_batch_data(batch, rnd, idx)
#output = model(temp_train_batch)[b] ## this is only for avoid bug, no other meanings
##for 10 round (rva)
temp_train_batch = self.get_1round_idx_batch_data_forrva(batch, rnd, idx)
output = self.model(temp_train_batch)[b][-1]
##end 10 round (rva)
target = batch["ans_ind"][b, rnd].to(self.device)
rs_score = self.sample[sample_idx]['relevance']
cuda_device = output.device
if loss_function == 'R0': # R0 loss (distance)
batch_loss = 0 #set this for higher NDCG score
# batch_loss = self.criterion(output.view(-1, output.size(-1)),
# target.view(-1)) # this is to keep MRR, can be deleted
rs_score = torch.tensor(rs_score).to(cuda_device)
output_sig = torch.sigmoid(output)
batch_loss += torch.sum(torch.pow((output_sig - rs_score), 2))
batch_loss = batch_loss / (100 + 1)
elif loss_function == 'R1': # R1 loss (Weighted Softmax)
# batch_loss = 0
batch_loss = self.criterion(output.view(-1, output.size(-1)), target.view(-1))
loss_num_count = 0
for rs_idx in range(len(rs_score)):
if rs_score[rs_idx] != 0:
batch_loss += rs_score[rs_idx] * self.criterion(output.view(-1, output.size(-1)),
torch.tensor(rs_idx).to(cuda_device).view(-1))
loss_num_count += 1
if loss_num_count != 0:
batch_loss = batch_loss / (loss_num_count + 1) # prevent count = 0
elif loss_function == 'R2': # R2 loss (Binary Sigmoid)
# batch_loss = 0
batch_loss = self.criterion(output.view(-1, output.size(-1)), target.view(-1))
output_sig = torch.sigmoid(output)
for rs_idx in range(len(rs_score)):
a = rs_score[rs_idx]
s = output_sig[rs_idx]
batch_loss += (1 + a) * - (a * torch.log(s) + (1 - a) * torch.log(1 - s))
batch_loss = batch_loss / len(rs_score)
elif loss_function == 'R3': # R3 loss (Generalized Ranking)
# batch_loss = 0
batch_loss = self.criterion(output.view(-1, output.size(-1)), target.view(-1))
rs_score = torch.tensor(rs_score).to(cuda_device)
exp_sum = torch.sum(torch.exp(output[[idx for idx in range(len(rs_score)) if rs_score[idx] < 1]]))
loss_num_count = 0
for rs_idx in range(len(rs_score)): # for the candidate with relevance score 1
if rs_score[rs_idx] > 0.8:
exp_sum = exp_sum + torch.exp(output[rs_idx])
batch_loss += (-output[rs_idx] + torch.log(exp_sum))
loss_num_count += 1
exp_sum = exp_sum - torch.exp(output[rs_idx])
exp_sum_2 = torch.sum(
torch.exp(output[[idx for idx in range(len(rs_score)) if rs_score[idx] < 0.4]]))
for rs_idx in range(len(rs_score)): # for the candidate with relevance score 0.5
if rs_score[rs_idx] < 0.8 and rs_score[rs_idx] > 0.4:
exp_sum_2 = exp_sum_2 + torch.exp(output[rs_idx])
batch_loss += (-output[rs_idx] + torch.log(exp_sum_2))
loss_num_count += 1
exp_sum_2 = exp_sum_2 - torch.exp(output[rs_idx])
batch_loss = batch_loss / (loss_num_count + 1)
elif loss_function == 'R4': # R4 loss (Normalized BCE (the newest one), better than R2 and stable than R3)
batch_loss = 0
# batch_loss = self.criterion(output.view(-1, output.size(-1)), target.view(-1))
output_sig = torch.sigmoid(output)
rs_score = torch.tensor(rs_score).to(cuda_device)
rs_score = F.normalize(rs_score.unsqueeze(0), p=1).squeeze(0) # norm
max_rs_score = torch.max(rs_score)
for rs_idx in range(len(rs_score)):
a = rs_score[rs_idx]
s = output_sig[rs_idx]
if s != 1: # s cannot be 1
batch_loss += - 20 * (a * torch.log(s) + (max_rs_score - a) * torch.log(1 - s))
batch_loss = batch_loss / len(rs_score)
else:
rs_score = torch.tensor(rs_score).to(cuda_device)
batch_loss = self.criterion_bce(output, rs_score)
##end loss computation
if batch_loss != 0: # prevent batch loss = 0
batch_loss.backward()
# count_loss += batch_loss.data.cpu().numpy()
accumulate_batch += batch["img_ids"].shape[0]
if self.hparams.virtual_batch_size == accumulate_batch \
or i == (len(self.train_dataset) // self.hparams.train_batch_size): # last batch
self.optimizer.step()
# --------------------------------------------------------------------
# Update running loss and decay learning rates
# --------------------------------------------------------------------
if running_loss > 0.0:
running_loss = 0.95 * running_loss + 0.05 * batch_loss.item()
else:
running_loss = batch_loss.item()
self.optimizer.zero_grad()
accumulate_batch = 0
self.scheduler.step(global_iteration_step)
global_iteration_step += 1
# torch.cuda.empty_cache()
description = "[{}][Epoch: {:3d}][Iter: {:6d}][Loss: {:6f}][lr: {:7f}]".format(
datetime.utcnow() - train_begin,
epoch,
global_iteration_step, running_loss,
self.optimizer.param_groups[0]['lr'])
tqdm_batch_iterator.set_description(description)
# tensorboard
if global_iteration_step % self.hparams.tensorboard_step == 0:
description = "[{}][Epoch: {:3d}][Iter: {:6d}][Loss: {:6f}][lr: {:7f}]".format(
datetime.utcnow() - train_begin,
epoch,
global_iteration_step, running_loss,
self.optimizer.param_groups[0]['lr'],
)
self._logger.info(description)
# tensorboard writing scalar
self.summary_writer.add_scalar(
"train/loss", batch_loss, global_iteration_step
)
self.summary_writer.add_scalar(
"train/lr", self.optimizer.param_groups[0]["lr"], global_iteration_step
)
# -------------------------------------------------------------------------
# ON EPOCH END (checkpointing and validation)
# -------------------------------------------------------------------------
self.checkpoint_manager.step(epoch)
self.previous_model_path = os.path.join(self.checkpoint_manager.ckpt_dirpath, "checkpoint_%d.pth" % (epoch))
self._logger.info(self.previous_model_path)
if epoch < self.hparams.num_epochs - 1 and self.hparams.dataset_version == '0.9':
continue
torch.cuda.empty_cache()
evaluation.run_evaluate(self.previous_model_path, global_iteration_step, self.summary_writer,
os.path.join(self.checkpoint_manager.ckpt_dirpath, "ranks_%d_valid.json" % epoch))
torch.cuda.empty_cache()
return self.previous_model_path