forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlfwcrop_convolutional_conditional_retrain.yaml
116 lines (112 loc) · 3.72 KB
/
lfwcrop_convolutional_conditional_retrain.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
!obj:pylearn2.train.Train {
dataset: &train !obj:adversarial.lfw.dataset.LFW {
axes: ['c', 0, 1, 'b'],
gcn: 55.,
lfw_path: '/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/faces32',
filelist_path: '/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/filelist.train.ids.txt',
embedding_file: '/afs/cs.stanford.edu/u/jgauthie/scr/lfw-lsa/LFW_attributes_30d.npz',
img_shape: [3, 32, 32],
# which_set: 'train',
# start: 0,
# stop: 16
},
model: !obj:adversarial.conditional.retrain.RetrainingConditionalAdversaryPair {
pretrained_model: !pkl: "lfwcrop_convolutional.pkl",
condition_space: &condition_space !obj:pylearn2.space.VectorSpace {
dim: 30,
dtype: 'float32'
},
condition_distribution: &condition_distribution !obj:adversarial.distributions.KernelDensityEstimateDistribution {
X: !obj:adversarial.util.load_numpy_obj {
file: '/afs/cs.stanford.edu/u/jgauthie/scr/lfw-lsa/LFW_attributes_30d.npz',
key: 'arr_0',
},
bandwidth: 1, # TODO tune
},
generator_new_W_irange: 0.005, # TODO tune
input_source: ['features', 'condition'],
# Identity function
discriminator_condition_mlp: !obj:pylearn2.models.mlp.MLP {
layer_name: 'condition_mlp',
layers: [
!obj:adversarial.util.IdentityLayer {
layer_name: 'condition_identity'
}
]
},
discriminator_joint_mlp: !obj:pylearn2.models.mlp.MLP {
layer_name: 'joint_mlp',
# input_source: ['data', 'condition'],
layers: [
!obj:pylearn2.models.mlp.Sigmoid {
#W_lr_scale: .1,
#b_lr_scale: .1,
#max_col_norm: 1.9365,
layer_name: 'y',
dim: 1,
irange: .005
}
]
},
},
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD {
batch_size: 128,
learning_rate: 0.004,
learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Momentum {
init_momentum: .5,
},
monitoring_dataset: {
#'train' : *train,
'valid' : !obj:adversarial.lfw.dataset.LFW {
axes: ['c', 0, 1, 'b'],
gcn: 55,
lfw_path: '/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/faces32',
filelist_path: '/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/filelist.dev.ids.txt',
embedding_file: '/afs/cs.stanford.edu/u/jgauthie/scr/lfw-lsa/LFW_attributes_30d.npz',
img_shape: [3, 32, 32],
# which_set: 'train',
# start: 0,
# stop: 16
}
#'test' : !obj:pylearn2.datasets.cifar10.CIFAR10 {
# which_set: 'test',
# gcn: 55.,
# }
},
cost: !obj:adversarial.conditional.ConditionalAdversaryCost {
condition_distribution: *condition_distribution,
scale_grads: 0,
#target_scale: .1,
discriminator_default_input_include_prob: .5,
discriminator_input_include_probs: {
'dh0': .8
},
discriminator_default_input_scale: 2.,
discriminator_input_scales: {
'dh0': 1.25
}
},
#termination_criterion: !obj:pylearn2.termination_criteria.MonitorBased {
# channel_name: "valid_y_misclass",
# prop_decrease: 0.,
# N: 100
#},
update_callbacks: !obj:pylearn2.training_algorithms.sgd.ExponentialDecay {
decay_factor: 1.000004,
min_lr: .000001
}
},
extensions: [
#!obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
# channel_name: 'valid_y_misclass',
# save_path: "${PYLEARN2_TRAIN_FILE_FULL_STEM}_best.pkl"
#},
!obj:pylearn2.training_algorithms.learning_rule.MomentumAdjustor {
start: 1,
saturate: 250,
final_momentum: .7
}
],
save_path: "${PYLEARN2_TRAIN_FILE_FULL_STEM}.pkl",
save_freq: 5,
}