diff --git a/book/loss.tex b/book/loss.tex index 640626c..b6ff7dd 100644 --- a/book/loss.tex +++ b/book/loss.tex @@ -55,7 +55,7 @@ \section{The Optimization Framework for Linear Models} write this down as a formal mathematics \concept{optimization problem} as follows: % -\optimizeuc{loss:zeroone}{\vw,b}{\sum_n \Ind[y_n (\dotp{\vec w}{\vx_n}+b) > 0]} +\optimizeuc{loss:zeroone}{\vw,b}{\sum_n \Ind[y_n (\dotp{\vec w}{\vx_n}+b) \leq 0]} % In this expression, you are optimizing over two variables, $\vw$ and $b$. The \concept{objective function} is the thing you are trying to @@ -110,7 +110,7 @@ \section{The Optimization Framework for Linear Models} objective}: % \optimizeuc{loss:zeroonereg}{\vw,b}{\sum_n \Ind[y_n (\dotp{\vec - w}{\vx_n}+b) > 0] + \la R(\vw,b)} + w}{\vx_n}+b) \leq 0] + \la R(\vw,b)} % In Eq~\eqref{opt:loss:zeroonereg}, we are now trying to optimize a \emph{trade-off} between a solution that gives low training error (the