forked from mozman/ezdxf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinpacking.py
215 lines (180 loc) · 5.36 KB
/
binpacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) 2022, Manfred Moitzi
# License: MIT License
from typing import cast
import math
import random
import os
import time
import sys
import argparse
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
import ezdxf.addons.binpacking as bp
import ezdxf.addons.genetic_algorithm as ga
SEED = 47856535
def make_sample(n: int, max_width: float, max_height: float, max_depth: float):
for _ in range(n):
yield (
random.random() * max_width,
random.random() * max_height,
random.random() * max_depth,
)
def make_flat_packer(items) -> bp.FlatPacker:
packer = bp.FlatPacker()
for index, (w, h) in enumerate(items):
packer.add_item(str(index), w, h)
return packer
def make_3d_packer(items) -> bp.Packer:
packer = bp.Packer()
for index, (w, h, d) in enumerate(items):
packer.add_item(str(index), w, h, d)
return packer
def setup_flat_packer(n: int) -> bp.FlatPacker:
items = make_sample(n, 20, 20, 20)
packer = make_flat_packer(
((round(w) + 1, round(h) + 1) for w, h, d in items)
)
area = packer.get_unfitted_volume()
w = round(math.sqrt(area) / 2.0)
h = w * 1.60
packer.add_bin("bin", w, h)
return packer
def setup_3d_packer(n: int) -> bp.Packer:
items = make_sample(n, 20, 20, 20)
packer = make_3d_packer(
((round(w) + 1, round(h) + 1, round(d) + 1) for w, h, d in items)
)
volume = packer.get_unfitted_volume()
s = round(math.pow(volume, 1.0 / 3.1))
packer.add_bin("bin", s, s, s)
return packer
def print_result(p0: bp.AbstractPacker, t: float):
box = p0.bins[0]
print(
f"Packed {len(box.items)} items in {t:.3f}s, "
f"ratio: {p0.get_fill_ratio():.3f}"
)
def run_bigger_first(packer: bp.AbstractPacker):
print("\nBigger first strategy:")
p0 = packer.copy()
strategy = bp.PickStrategy.BIGGER_FIRST
t0 = time.perf_counter()
p0.pack(strategy)
t1 = time.perf_counter()
print_result(p0, t1 - t0)
def run_shuffle(packer: bp.AbstractPacker, shuffle_count: int):
print("\nShuffle strategy:")
n_shuffle = shuffle_count
t0 = time.perf_counter()
p0 = bp.shuffle_pack(packer, n_shuffle)
t1 = time.perf_counter()
print(f"Shuffle {n_shuffle}x, best result:")
print_result(p0, t1 - t0)
def make_subset_optimizer(
packer: bp.AbstractPacker, generations: int, dna_count: int
):
evaluator = bp.SubSetEvaluator(packer)
optimizer = ga.GeneticOptimizer(evaluator, max_generations=generations)
optimizer.name = "pack item subset"
optimizer.add_candidates(ga.BitDNA.n_random(dna_count, len(packer.items)))
return optimizer
def run(optimizer: ga.GeneticOptimizer):
def feedback(optimizer: ga.GeneticOptimizer):
print(
f"gen: {optimizer.generation:4}, "
f"stag: {optimizer.stagnation:4}, "
f"fitness: {optimizer.best_fitness:.3f}"
)
return False
print(
f"\nGenetic algorithm search: {optimizer.name}\n"
f"max generations={optimizer.max_generations}, DNA count={optimizer.count}"
)
optimizer.execute(feedback, interval=3.0)
print(
f"GeneticOptimizer: {optimizer.generation} generations x {optimizer.count} "
f"DNA strands, best result:"
)
evaluator = cast(bp.SubSetEvaluator, optimizer.evaluator)
best_packer = evaluator.run_packer(optimizer.best_dna)
print_result(best_packer, optimizer.runtime)
def show_log(log: ga.Log):
x = []
y = []
avg = []
for index, entry in enumerate(log.entries, start=1):
x.append(index)
y.append(entry.fitness)
avg.append(entry.avg_fitness)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.plot(x, avg)
ax.set(
xlabel="generation",
ylabel="fitness",
title="Strategy: pack item subset",
)
ax.grid()
plt.show()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-g",
"--generations",
type=int,
default=200,
help="generation count",
)
parser.add_argument(
"-d",
"--dna",
type=int,
default=50,
help="count of DNA strands",
)
parser.add_argument(
"-i",
"--items",
type=int,
default=50,
help="items count",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=SEED,
help="random generator seed",
)
parser.add_argument(
"-v",
"--view",
action="store_true",
default=False,
help="view logged data",
)
return parser.parse_args()
DATA_LOG = "binpacking.json"
def main():
args = parse_args()
if args.view and plt and os.path.exists(DATA_LOG):
log = ga.Log.load(DATA_LOG)
show_log(log)
sys.exit()
random.seed(args.seed)
packer = setup_3d_packer(args.items)
# packer = setup_flat_packer(50)
print(packer.bins[0])
print(f"Total item count: {len(packer.items)}")
print(f"Total item volume: {packer.get_unfitted_volume():.3f}")
print(f"Random Seed: {args.seed}")
run_bigger_first(packer)
optimizer = make_subset_optimizer(packer, args.generations, args.dna)
run(optimizer)
optimizer.log.dump(DATA_LOG)
if plt is not None:
show_log(optimizer.log)
if __name__ == "__main__":
main()