-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2.57.scm
96 lines (81 loc) · 2.6 KB
/
2.57.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
;;(define (make-sum a1 a2) (list '+ a1 a2))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
;;(define (make-product m1 m2) (list '* m1 m2))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
;;(define (augend s) (caddr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
;;(define (multiplicand p) (caddr p))
(deriv '(+ x 3) 'x)
(deriv '(* x y) 'x)
(deriv '(* (* x y) (+ x 3)) 'x)
(define (exponentiation? exp)
(and (pair? exp) (eq? (car exp) '**)))
(define (base s) (cadr s))
(define (exponent s) (caddr s))
(define (make-exponentiation b e)
(cond ((=number? e 0) 1)
((=number? e 1) b)
((and (number? b) (number? e)) (expt b e))
(else (list '** b e))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product
(make-product (exponent exp)
(make-exponentiation (base exp)
(- (exponent exp) 1)))
(deriv (base exp) var)))
(else
(error "unknown expression type -- DERIV" exp))))
(exponentiation? '(** x 3))
(base '(** x 3))
(exponent '(** x 3))
(make-exponentiation 'x 3)
(deriv '(** x 3) 'x)
(deriv '(** y 3) 'x)
(deriv '(** 3 3) 'x)
;;(deriv '(** x y) 'x) exponent must be the number
(deriv '(** x 0) 'x)
(deriv '(** x 1) 'x)
;;---- ex 2.57 ---------
(define (augend s)
(if (null? (cdddr s)) (caddr s)
(cons '+ (cddr s))))
(define (multiplicand p)
(if (null? (cdddr p)) (caddr p)
(cons '* (cddr p))))
(deriv '(+ x y 3) 'x)
(deriv '(+ x (+ x y 3)) 'x)
(deriv '(+ (+ x y) (+ x x (+ y 3))) 'x)
(deriv '(* x y 3) 'x)
(deriv '(* x y (+ x 3)) 'x)