-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_eval.py
498 lines (445 loc) · 20.9 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
## euler angle to 3x4 matrix
## or quaternion to 3x4 matrix
## preprocess before kitti evaluation.
## orbslam2 python module
import sys
import os
# from tools.pose_evaluation_utils import quat_pose_to_mat
import argparse
import yaml
import numpy as np
import subprocess
from pathlib import Path
from glob import glob
import logging
import code
from utils.eval_utils import flow_frontend
from utils.eval_utils import Sc_Sfmleaner_frontend
from utils.eval_utils import Eval_frontend
from utils.eval_utils import Result_processor
from utils.eval_utils import Euroc_dataset, Tum_dataset
# from utils.eval_utils import Orb_slam_frontend, twitchslam_frontend
def eulerAnglesToRotationMatrix(theta):
R_x = np.array(
[
[1, 0, 0],
[0, np.cos(theta[0]), -np.sin(theta[0])],
[0, np.sin(theta[0]), np.cos(theta[0])],
]
)
R_y = np.array(
[
[np.cos(theta[1]), 0, np.sin(theta[1])],
[0, 1, 0],
[-np.sin(theta[1]), 0, np.cos(theta[1])],
]
)
R_z = np.array(
[
[np.cos(theta[2]), -np.sin(theta[2]), 0],
[np.sin(theta[2]), np.cos(theta[2]), 0],
[0, 0, 1],
]
)
R = np.dot(R_z, np.dot(R_y, R_x))
return R
def euler2mat(vec):
# print(f"vec: {vec}")
rot = eulerAnglesToRotationMatrix(vec[:3])
# print(f"rot: {rot}, trans: {vec[3:]}")
mat = np.concatenate((rot, vec[3:].reshape(3, 1)), axis=1)
return mat
def eval_trajectory(save_folder, alignment="7dof", seq=''):
return f"python kitti-odom-eval/eval_odom.py --result {save_folder} --align {alignment} --seq {seq}"
def eval_trajectory_snippet(save_folder, seq, length=5):
# from deepsfm_dummy.utils.eval_tools import Exp_table_processor
from deepFEPE.utils.eval_tools import Exp_table_processor
# seq = "10"
table_processor = Exp_table_processor
poses_gt = table_processor.read_gt_poses(path='./datasets/kitti/poses/', seq=seq)
poses_est = np.genfromtxt(f'{save_folder}/{seq}.txt')
poses_est = poses_est[:,1:].reshape(-1,12)
poses_est = poses_est.reshape(-1,3,4)
print(f"length est vs. gt: {len(poses_est)}, {len(poses_gt)}")
assert len(poses_est) == len(poses_gt)
data = table_processor.pose_seq_ate(poses_est, poses_gt, 5)
entries = ["error_names", "mean_errors", "std_errors"]
# results = { key: data[key] for key in entries }
results = {}
for i, n in enumerate(data["error_names"]):
for item in entries[1:]:
results[f"{n}_{item}"] = data[item][i].astype(float)
dump_json(results, f"{save_folder}/snip_ate.yml")
# print(data)
pass
def eval_trajectory_snippet_seqs(poses_est, poses_gt, save_folder, length=5):
from deepsfm_dummy.utils.eval_tools import Exp_table_processor
table_processor = Exp_table_processor
# seq = "10"
# poses_gt = table_processor.read_gt_poses(path='./datasets/kitti/poses/', seq=seq)
# poses_est = np.genfromtxt(f'{save_folder}/{seq}.txt')
# poses_est = poses_est[:,1:].reshape(-1,12)
# poses_est = poses_est.reshape(-1,3,4)
print(f"length est vs. gt: {len(poses_est)}, {len(poses_gt)}")
assert len(poses_est) == len(poses_gt)
data = table_processor.pose_seq_ate(poses_est, poses_gt, 5)
entries = ["error_names", "mean_errors", "std_errors"]
# results = { key: data[key] for key in entries }
results = {}
for i, n in enumerate(data["error_names"]):
for item in entries[1:]:
results[f"{n}_{item}"] = data[item][i].astype(float)
dump_json(results, f"{save_folder}/snip_ate.yml")
# print(data)
pass
def get_sequences(args):
sequences = []
controller = None
if args.dataset == "kitti":
if args.seq == "all":
sequences = [f"{seq:02}" for seq in range(11)]
else:
sequences = [args.seq]
elif args.dataset == 'euroc':
euroc_controller = Euroc_dataset()
if args.seq == "all":
## manually run the command if needed
command = euroc_controller.process_gt_poses()
print(f"process datasets: {command}")
print(f"+++++ manually run the command if needed +++++")
sequences = euroc_controller.get_all_seqs()
else:
sequences = [args.seq]
controller = euroc_controller
elif args.dataset == 'tum':
controller = Tum_dataset()
if args.seq == "all":
sequences = controller.get_all_seqs()
else:
sequences = [args.seq]
else:
logging.error(f"dataset: {dataset} is not defined.")
pass
return sequences, controller
def dump_json(dict, filename):
import json
json = json.dumps(dict)
f = open(filename, "w")
f.write(json)
f.close()
def dump_config(config, output_dir, filename='config.yml'):
Path(output_dir).mkdir(exist_ok=True, parents=True)
with open(os.path.join(output_dir, filename), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
pass
# for orbslam kitti config
def get_config_file(seq, dataset):
config_file = ""
if dataset == "kitti":
seq = int(seq)
if seq <= 2:
config_file = "KITTI00-02.yaml"
elif seq == 3:
config_file = "KITTI03.yaml"
else:
config_file = "KITTI04-12.yaml"
elif dataset == "euroc":
config_file = "EuRoC.yaml"
return config_file
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Change format from quaternion to kitti format"
)
# subparsers = parser.add_subparsers(help='sub-command help')
# parser_optim = parser.add_argument_group('optim', 'use for g2o optimization')
parser.add_argument(
"exper_name", type=str, help="The experiment name for exporting results"
)
parser.add_argument(
"-sub", "--subfolder", type=str, default="", help="result subfolder, can be separated using model name"
)
models = ['superglueflow_scsfm', 'siftflow', 'siftflow_scsfm', 'superglueflow',
'superflow', 'superflow2', 'trianflow', 'siftflow_deepF']
print(f"models: {models} are supported")
parser.add_argument(
"-m", "--model", type=str, default="siftflow", choices=models, help="model to test"
)
parser.add_argument(
"-d", "--dataset", type=str, default="kitti", help="[kitti | euroc | tum ... ]"
)
parser.add_argument('--iters', type=int, default='-1', help='Limited iterations for debugging')
# parser.add_argument(
# "--undistorted", action="store_true", default=False, help="Must be Euroc dataset"
# )
# parser.add_argument("--dataset_dir", type=str, default="", help='link to dataset')
# parser.add_argument('out_file', type=str, help='the output file name')
# parser.add_argument('--result_dir', type=str, default='./data/', help='Directory path of storing the odometry results')
# parser.add_argument('--action', type=str, default=None, help='[ euler2mat | ]')
# parser.add_argument('--toCameraCoord', type=lambda x: (str(x).lower() == 'true'), default=False, help='Whether to convert the pose to camera coordinate')
parser.add_argument("--eval", action="store_true", help="eval the sequences")
parser.add_argument("--debug", action="store_true", help="debug mode: run only one sequence")
parser.add_argument("--snippet", action="store_true", help="eval the sequences with snippets")
parser.add_argument(
"--run", action="store_true", help="run to evaluate the sequences"
)
## deepF
#parser.add_argument("--deepF", action="store_true", help="Use DeepF pipeline")
## for nautilus
parser.add_argument("--python_prefix", '-py', type=str, default="", help="Use conda python")
parser.add_argument(
"--table", action="store_true", help="collect the evaluation to table"
)
parser.add_argument(
"--view", action="store_true", default=False, help="view the slam from the display"
)
parser.add_argument(
"--wTime", action="store_true", default=False, help="append time stamps to the results"
)
parser.add_argument(
"--seq", type=str, default="all", help="run on all sequences"
)
## for scsfm
parser.add_argument("--skip_frame", default=1, type=int, help="The time differences between frames")
# pretrained model
parser.add_argument(
"--pretrained", type=str, default="./pretrained/pose/cs+k_pose.tar", help="path of trained model"
)
parser.add_argument("--keyframe", default="", type=str, help="File with keyframe stamps")
# eval
parser.add_argument(
"--metric", type=str, default="ape_xy", help="EuRoc: [ape_xy | rpe_xy], Kitti/euroc snippet: [mean | std]"
)
# lstm network
# parser.add_argument("--lstm", action='store_true', default=False, help="use lstm network")
BASE_DIR = "/home/yoyee/Documents/deep_keyframe"
# BASE_DIR = "/home/yyjau/Documents/deep_keyframe"
# BASE_DIR = "."
args = parser.parse_args()
print(f"args: {args}")
## parameters
result_entries = [] # for args.table
result_table = {}
re_processor = Result_processor(None)
dataset = args.dataset
subfolder = args.subfolder
# dataset controller
# if dataset == 'euroc':
# euroc_controller = Euroc_dataset()
seqs, controller = get_sequences(args)
if args.debug:
seqs = seqs[:1]
w_time = args.wTime
print(f"w_time: {w_time}")
args.exper_name = args.exper_name + "_t" if args.wTime else args.exper_name
if args.model in models:
model_fe = flow_frontend(args.model)
if args.run:
## kitti and euroc are the same
# get python filename
#if args.deepF:
# model_fe.pyFile = "infer_deepF.py"
#else:
if dataset == 'euroc':
# args.width, args.height = 752, 480
pass
else:
model_fe.pyFile = "infer_deepF.py" #TODO : Change this back so this doesn't confuse You-Yi
dump_config(args, model_fe.get_saved_base(subfolder, args.exper_name, dataset))
for s in seqs:
# save_folder = model_fe.get_saved_folder(subfolder, args.exper_name, dataset, s)
save_folder = model_fe.get_saved_folder(subfolder, args.exper_name, dataset, '')
command = model_fe.get_command_scsfmlearner(
args,
save_folder, dataset, sequence=s, skip_frame=args.skip_frame,
pretrained=args.pretrained,
keyframe=args.keyframe
)
command = args.python_prefix + command
print(f"command: {command}")
subprocess.run(f"{command}", shell=True, check=True)
if args.eval:
# eval_fe = Eval_frontend(plot_mode="xy", plot=False)
eval_fe = Eval_frontend(plot_mode="xy", plot=False)
for i, s in enumerate(seqs):
save_folder = model_fe.get_saved_folder(subfolder, args.exper_name, dataset, s, add_model=True)
if dataset == 'kitti':
alignment = '7dof'
command = eval_trajectory(save_folder, alignment=alignment, seq=s)
print(f"run ==> {command}")
subprocess.run(f"{command}", shell=True, check=True)
# eval_trajectory_snippet(save_folder, s, length=5)
elif dataset == 'euroc':
est_traj = model_fe.get_saved_trajectory(subfolder, args.exper_name, dataset, s, trailing="_noTime.txt")
gt_traj = controller.get_seq_gt_filename(s)
# test snippet
print(f"est_traj: {est_traj}, gt_traj: {gt_traj}, save_folder: {save_folder}")
poses_est = np.genfromtxt(est_traj)
poses_est = poses_est.reshape(-1,12)
poses_est = poses_est.reshape(-1,3,4)
poses_gt = np.genfromtxt(gt_traj).reshape(-1,12).reshape(-1,3,4)
eval_trajectory_snippet_seqs(poses_est, poses_gt, save_folder, length=5)
if_evo = False
if if_evo:
# use evo
command_list, input_list = eval_fe.eval_trajectory(
est_traj, gt_traj, traj=True, ape=True, rpe=True
)
print(f"eval: {command_list}")
for command, inp in zip(command_list, input_list):
subprocess.run(f"{command}", shell=True, check=True, input=inp)
# break
else:
# convert to tum
seq = s
est_tum = model_fe.get_saved_trajectory(args.exper_name,
dataset, seq, trailing='')
# get ground truth file
gt_traj = controller.get_seq_gt_filename(seq, dataset=model_fe.dataset_dir[dataset], with_time=True)
# est_tum = eval_fe.kitti_wTime_tum(est_traj)
if dataset == 'euroc':
gt_tum = eval_fe.kitti_wTime_tum(gt_traj, reset_stamp=True)
else:
gt_tum = gt_traj
print(f"est_tum: {est_tum}, gt_tum: {gt_tum}")
# print(f"est_traj: {est_traj}, gt_traj: {gt_traj}, save_folder: {save_folder}")
# poses_est = np.genfromtxt(est_traj)
# poses_est = poses_est.reshape(-1,12)
# poses_est = poses_est.reshape(-1,3,4)
# poses_gt = np.genfromtxt(gt_traj).reshape(-1,12).reshape(-1,3,4)
# eval_trajectory_snippet_seqs(poses_est, poses_gt, save_folder, length=5)
if_evo = True
if if_evo:
## get commands to run
eval_mode = "tum"
command_list, input_list = eval_fe.eval_trajectory(
est_tum, gt_tum, mode=eval_mode, traj=True, ape=True, rpe=True
)
print(f"eval: {command_list}")
for command, inp in zip(command_list, input_list):
#print(f"{command}")
subprocess.run(f"{command}", shell=True, check=True, input=inp)
## deprecated (you-yi)
if args.model == "scsfm":
model_fe = Sc_Sfmleaner_frontend()
# seqs = sequences
# pretrained = "./pretrained/pose/cs+k_pose.tar"
if args.run:
## kitti and euroc are the same
if dataset == 'euroc':
args.width, args.height = 752, 480
elif dataset == 'tum':
args.width, args.height = 640, 480
dump_config(args, model_fe.get_saved_base(subfolder, args.exper_name, dataset))
for s in seqs:
save_folder = model_fe.get_saved_folder(subfolder, args.exper_name, dataset, s)
command = model_fe.get_command_scsfmlearner(
args,
save_folder, dataset, sequence=s, skip_frame=args.skip_frame,
pretrained=args.pretrained,
keyframe=args.keyframe
)
print(f"command: {command}")
subprocess.run(f"{command}", shell=True, check=True)
if args.eval:
# eval_fe = Eval_frontend(plot_mode="xy", plot=False)
eval_fe = Eval_frontend(plot_mode="xy", plot=False)
for i, s in enumerate(seqs):
save_folder = model_fe.get_saved_folder(subfolder, args.exper_name, dataset, s)
if dataset == 'kitti':
alignment = '7dof'
eval_trajectory(save_folder, alignment=alignment)
eval_trajectory_snippet(save_folder, s, length=5)
elif dataset == 'euroc':
est_traj = model_fe.get_saved_trajectory(subfolder, args.exper_name, dataset, s, trailing="_noTime.txt")
gt_traj = controller.get_seq_gt_filename(s)
# test snippet
print(f"est_traj: {est_traj}, gt_traj: {gt_traj}, save_folder: {save_folder}")
poses_est = np.genfromtxt(est_traj)
poses_est = poses_est.reshape(-1,12)
poses_est = poses_est.reshape(-1,3,4)
poses_gt = np.genfromtxt(gt_traj).reshape(-1,12).reshape(-1,3,4)
eval_trajectory_snippet_seqs(poses_est, poses_gt, save_folder, length=5)
if_evo = False
if if_evo:
# use evo
command_list, input_list = eval_fe.eval_trajectory(
est_traj, gt_traj, traj=True, ape=True, rpe=True
)
print(f"eval: {command_list}")
for command, inp in zip(command_list, input_list):
subprocess.run(f"{command}", shell=True, check=True, input=inp)
# break
else:
# convert to tum
seq = s
est_traj = model_fe.get_saved_trajectory(subfolder, args.exper_name,
dataset, seq, trailing='_t.txt')
# get ground truth file
gt_traj = controller.get_seq_gt_filename(seq, dataset=model_fe.dataset_dir[dataset], with_time=True)
est_tum = eval_fe.kitti_wTime_tum(est_traj)
if dataset == 'euroc':
gt_tum = eval_fe.kitti_wTime_tum(gt_traj, reset_stamp=True)
else:
gt_tum = gt_traj
print(f"est_tum: {est_tum}, gt_tum: {gt_tum}")
# print(f"est_traj: {est_traj}, gt_traj: {gt_traj}, save_folder: {save_folder}")
# poses_est = np.genfromtxt(est_traj)
# poses_est = poses_est.reshape(-1,12)
# poses_est = poses_est.reshape(-1,3,4)
# poses_gt = np.genfromtxt(gt_traj).reshape(-1,12).reshape(-1,3,4)
# eval_trajectory_snippet_seqs(poses_est, poses_gt, save_folder, length=5)
if_evo = True
if if_evo:
## get commands to run
eval_mode = "tum"
command_list, input_list = eval_fe.eval_trajectory(
est_tum, gt_tum, mode=eval_mode, traj=True, ape=True, rpe=True
)
print(f"eval: {command_list}")
for command, inp in zip(command_list, input_list):
subprocess.run(f"{command}", shell=True, check=True, input=inp)
if args.table:
# metric
# result_arr = re_processor.get_result_arr(result_entries, result_tool="evo")
def get_result_tools(dataset, args):
result_tool = "" if dataset == 'kitti' else 'evo'
if dataset == 'euroc' and args.snippet == True:
result_tool = 'snippet'
if dataset == 'kitti' and args.snippet == True:
result_tool = 'snippet'
## result entry
result_entry = ""
if result_tool == "evo":
result_entry = "rmse"
elif result_tool == "snippet":
if args.metric == "mean" or args.metric == "std":
result_entry = f"ATE_{args.metric}_errors"
else:
result_entry = "ATE_mean_errors"
print(f"metric *{args.metric}* is not valid. Use *{result_entry}*")
return {'result_tool': result_tool, 'entry': result_entry}
# get data
data = re_processor.add_result_table(dataset,
subfolder, args.exper_name, seqs, model_fe, metric=args.metric, snippet=args.snippet)
result_entries = data['result_entries']
# print(f"===== result_tool: {result_tool} =====")
# print(f"===== result_entries: {result_entries} =====")
# result_arr = re_processor.get_result_arr(result_entries, result_tool=result_tool, entry=result_entry)
result_tools_dict = get_result_tools(dataset, args)
print(f"===== result_tools_dict: {result_tools_dict} =====")
result_arr = re_processor.get_result_arr(result_entries, **result_tools_dict)
result_arr = result_arr.transpose()
result_arr = re_processor.get_average(result_arr)
print(f"{result_table}, arr: {result_arr}")
table_body = re_processor.get_latex_from_arr(result_arr)
table_ready = "\n".join(table_body)
print(f"=====metric: {args.metric}=====")
print(f"titles: {' & '.join(result_entries)}")
print(f"table_body: {table_ready}")
# if args.action == 'euler2mat':
# poses_mat = [euler2mat(v)[:3,:] for v in poses_quat]
# poses_mat = np.array(poses_mat)
# poses_mat = poses_mat.reshape(-1, 12)
# np.savetxt(args.out_file, poses_mat)
# pose_eval = kittiOdomEval(args)
# pose_eval.eval(toCameraCoord=args.toCameraCoord) # set the value according to the predicted results