-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbdd100k-train-diffusion.py
97 lines (84 loc) · 2.84 KB
/
bdd100k-train-diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Train a diffusion model on images.
"""
import argparse
import numpy as np
from guided_diffusion import dist_util, logger
from guided_diffusion.image_datasets import load_data_bdd100k
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from guided_diffusion.train_util import TrainLoop
def main():
args = create_argparser().parse_args()
dist_util.setup_dist(args.gpus)
logger.configure(dir=args.output_path)
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
num_classes=None,
multiclass=False,
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
if args.init_step != -1:
# when sampling t with the scheduler, there will be
# a probability of 0 to extract a t > args.init_step
schedule_sampler._weights[args.init_step:] = 0
logger.log("creating data loader...")
data = load_data_bdd100k(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size='256,512',
class_cond=args.class_cond,
random_crop=False,
random_flip=False,
deterministic=True
)
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
data=data,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="/data/chercheurs/jeanner211/DATASETS/celeba",
schedule_sampler="uniform",
init_step=-1, # learn only the first init_step steps for cheap training ?
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=10,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
output_path='/data/chercheurs/jeanner211/RESULTS/DCF-CelebA/ddpm',
gpus='',
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()