-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_optimized_loss.py
109 lines (72 loc) · 3.51 KB
/
find_optimized_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
import torch
from torch.utils.data import DataLoader
import utils.loader as l
import utils.object as o
import utils.target as t
import utils.wrapper as w
def get_arguments():
"""Gets arguments from the command line.
Returns:
A parser with the input arguments.
"""
# Creates the ArgumentParser
parser = argparse.ArgumentParser(usage='Finds an optimized loss using Genetic Programming.')
parser.add_argument('dataset', help='Dataset identifier', choices=['mnist', 'fmnist', 'kmnist'])
parser.add_argument('model', help='Model identifier', choices=['mlp', 'resnet'])
parser.add_argument('output_file', help='Output history file .pkl identifier', type=str)
parser.add_argument('-batch_size', help='Batch size', type=int, default=128)
parser.add_argument('-n_input', help='Number of input units', type=int, default=784)
parser.add_argument('-n_hidden', help='Number of hidden units', type=int, default=128)
parser.add_argument('-n_classes', help='Number of classes', type=int, default=10)
parser.add_argument('-lr', help='Learning rate', type=float, default=0.001)
parser.add_argument('-epochs', help='Number of training epochs', type=int, default=1)
parser.add_argument('-n_agents', help='Number of meta-heuristic agents', type=int, default=5)
parser.add_argument('-n_iter', help='Number of meta-heuristic iterations', type=int, default=10)
parser.add_argument('-min_depth', help='Minimum depth of trees', type=int, default=1)
parser.add_argument('-max_depth', help='Maximum depth of trees', type=int, default=5)
parser.add_argument('-init_loss_prob', help='Probability of initial standard losses', type=float, default=0.0)
parser.add_argument('-device', help='CPU or GPU usage', choices=['cpu', 'cuda'])
parser.add_argument('-seed', help='Seed identifier', type=int, default=0)
parser.add_argument('--shuffle', help='Whether data should be shuffled or not', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
# Gathers the input arguments
args = get_arguments()
# Common arguments
dataset = args.dataset
output_file = args.output_file
seed = args.seed
shuffle = args.shuffle
# Model arguments
name = args.model
batch_size = args.batch_size
n_input = args.n_input
n_hidden = args.n_hidden
n_classes = args.n_classes
epochs = args.epochs
lr = args.lr
device = args.device
# Optimization arguments
n_agents = args.n_agents
n_iterations = args.n_iter
min_depth = args.min_depth
max_depth = args.max_depth
init_loss_prob = args.init_loss_prob
# Loads the data
train, val, _ = l.load_dataset(name=dataset, seed=seed)
# Creates the iterators
train_iterator = DataLoader(train, batch_size=batch_size, shuffle=shuffle)
val_iterator = DataLoader(val, batch_size=batch_size, shuffle=shuffle)
# Defining the torch seed
torch.manual_seed(seed)
# Gathers the model object
model = o.get_model(name).obj
# Defining the optimization task
opt_fn = t.validate_losses(train_iterator, val_iterator, model, n_input, n_hidden, n_classes, lr, epochs, device)
# Running the optimization task
history = w.run(opt_fn, n_trees=n_agents, n_terminals=3, n_iterations=n_iterations, n_classes=n_classes,
min_depth=min_depth, max_depth=max_depth, functions=['MUL', 'LOG_SOFTMAX'],
init_loss_prob=init_loss_prob)
# Saving optimization history
history.save(output_file)