-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmnist.py
executable file
·102 lines (75 loc) · 4.38 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
#
# From the MNIST tutorial: https://www.tensorflow.org/tutorials/mnist/pros/
import argparse
import tensorflow as tf
import numpy as np
class MNIST:
def __init__(self):
self.g = tf.Graph()
with self.g.as_default():
with tf.variable_scope("input"):
self.x = tf.placeholder(tf.float32, shape=[None, 784])
self.y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(self.x, [-1,28,28,1])
with tf.variable_scope("conv1"):
W_conv1 = self.weight_variable([5, 5, 1, 32])
b_conv1 = self.bias_variable([32])
h_conv1 = tf.nn.relu(self.conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = self.max_pool_2x2(h_conv1)
with tf.variable_scope("conv2"):
W_conv2 = self.weight_variable([5, 5, 32, 64])
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = self.max_pool_2x2(h_conv2)
with tf.variable_scope("fc1"):
W_fc1 = self.weight_variable([7 * 7 * 64, 1024])
b_fc1 = self.bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
self.keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
with tf.variable_scope("fc2"):
W_fc2 = self.weight_variable([1024, 10])
b_fc2 = self.bias_variable([10])
self.y_logit = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(self.y_logit, self.y_))
self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.cross_entropy)
self.correct_prediction = tf.equal(tf.argmax(self.y_logit, 1), tf.argmax(self.y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
self.sess = tf.Session(graph=self.g)
self.sess.run(tf.global_variables_initializer())
def train(self, mnist_data, num_steps=20000*50):
for i in range(num_steps / 50):
batch = mnist_data.train.next_batch(50)
self.train_batch(batch[0], batch[1], i)
def train_batch(self, batch_x, target_y, step):
if step % 100 == 0:
train_accuracy = self.eval_batch(batch_x, target_y)
print("step %d, training accuracy %g" % (step, train_accuracy))
self.sess.run([self.train_step], feed_dict={self.x: batch_x, self.y_: target_y, self.keep_prob: 0.5})
def eval_batch(self, batch_x, target_y):
accuracy = self.sess.run([self.accuracy], feed_dict={self.x: batch_x, self.y_: target_y, self.keep_prob: 1.0})
return accuracy[0]
def weight_variable(self, shape):
return tf.get_variable('weights', shape, initializer=tf.contrib.layers.xavier_initializer())
def bias_variable(self, shape):
return tf.get_variable('biases', shape, initializer=tf.constant_initializer(0.0))
def conv2d(self, x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(self, x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--mnist-dir", default='/tmp/mnist-data', help="Director where mnist downloaded dataset will be stored")
parser.add_argument("--num-steps", default=20000*50, help="Number of total sample images to train on")
args = parser.parse_args()
mnist_data = tf.contrib.learn.python.learn.datasets.mnist.read_data_sets(args.mnist_dir, one_hot=True)
mnist = MNIST()
mnist.train(mnist_data, args.num_steps)
# Baseline: Test accuracy 0.9934
test_accuracy = mnist.eval_batch(mnist_data.test.images, mnist_data.test.labels)
print("Test accuracy %g" % test_accuracy)
if __name__ == "__main__":
main()