|
1 |
| -// Copyright (c) 2018 The Bitcoin Core developers |
| 1 | +// Copyright (c) 2018-2020 The Bitcoin Core developers |
2 | 2 | // Distributed under the MIT software license, see the accompanying
|
3 |
| -// file COPYING or https://opensource.org/licenses/mit-license.php. |
| 3 | +// file COPYING or https://www.opensource.org/licenses/mit-license.php. |
4 | 4 |
|
5 | 5 | #ifndef BITCOIN_SPAN_H
|
6 | 6 | #define BITCOIN_SPAN_H
|
7 | 7 |
|
8 | 8 | #include <type_traits>
|
9 | 9 | #include <cstddef>
|
10 | 10 | #include <algorithm>
|
| 11 | +#include <assert.h> |
| 12 | + |
| 13 | +#ifdef DEBUG |
| 14 | +#define CONSTEXPR_IF_NOT_DEBUG |
| 15 | +#define ASSERT_IF_DEBUG(x) assert((x)) |
| 16 | +#else |
| 17 | +#define CONSTEXPR_IF_NOT_DEBUG constexpr |
| 18 | +#define ASSERT_IF_DEBUG(x) |
| 19 | +#endif |
| 20 | + |
| 21 | +#if defined(__clang__) |
| 22 | +#if __has_attribute(lifetimebound) |
| 23 | +#define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]] |
| 24 | +#else |
| 25 | +#define SPAN_ATTR_LIFETIMEBOUND |
| 26 | +#endif |
| 27 | +#else |
| 28 | +#define SPAN_ATTR_LIFETIMEBOUND |
| 29 | +#endif |
11 | 30 |
|
12 | 31 | /** A Span is an object that can refer to a contiguous sequence of objects.
|
13 | 32 | *
|
14 | 33 | * It implements a subset of C++20's std::span.
|
| 34 | + * |
| 35 | + * Things to be aware of when writing code that deals with Spans: |
| 36 | + * |
| 37 | + * - Similar to references themselves, Spans are subject to reference lifetime |
| 38 | + * issues. The user is responsible for making sure the objects pointed to by |
| 39 | + * a Span live as long as the Span is used. For example: |
| 40 | + * |
| 41 | + * std::vector<int> vec{1,2,3,4}; |
| 42 | + * Span<int> sp(vec); |
| 43 | + * vec.push_back(5); |
| 44 | + * printf("%i\n", sp.front()); // UB! |
| 45 | + * |
| 46 | + * may exhibit undefined behavior, as increasing the size of a vector may |
| 47 | + * invalidate references. |
| 48 | + * |
| 49 | + * - One particular pitfall is that Spans can be constructed from temporaries, |
| 50 | + * but this is unsafe when the Span is stored in a variable, outliving the |
| 51 | + * temporary. For example, this will compile, but exhibits undefined behavior: |
| 52 | + * |
| 53 | + * Span<const int> sp(std::vector<int>{1, 2, 3}); |
| 54 | + * printf("%i\n", sp.front()); // UB! |
| 55 | + * |
| 56 | + * The lifetime of the vector ends when the statement it is created in ends. |
| 57 | + * Thus the Span is left with a dangling reference, and using it is undefined. |
| 58 | + * |
| 59 | + * - Due to Span's automatic creation from range-like objects (arrays, and data |
| 60 | + * types that expose a data() and size() member function), functions that |
| 61 | + * accept a Span as input parameter can be called with any compatible |
| 62 | + * range-like object. For example, this works: |
| 63 | +* |
| 64 | + * void Foo(Span<const int> arg); |
| 65 | + * |
| 66 | + * Foo(std::vector<int>{1, 2, 3}); // Works |
| 67 | + * |
| 68 | + * This is very useful in cases where a function truly does not care about the |
| 69 | + * container, and only about having exactly a range of elements. However it |
| 70 | + * may also be surprising to see automatic conversions in this case. |
| 71 | + * |
| 72 | + * When a function accepts a Span with a mutable element type, it will not |
| 73 | + * accept temporaries; only variables or other references. For example: |
| 74 | + * |
| 75 | + * void FooMut(Span<int> arg); |
| 76 | + * |
| 77 | + * FooMut(std::vector<int>{1, 2, 3}); // Does not compile |
| 78 | + * std::vector<int> baz{1, 2, 3}; |
| 79 | + * FooMut(baz); // Works |
| 80 | + * |
| 81 | + * This is similar to how functions that take (non-const) lvalue references |
| 82 | + * as input cannot accept temporaries. This does not work either: |
| 83 | + * |
| 84 | + * void FooVec(std::vector<int>& arg); |
| 85 | + * FooVec(std::vector<int>{1, 2, 3}); // Does not compile |
| 86 | + * |
| 87 | + * The idea is that if a function accepts a mutable reference, a meaningful |
| 88 | + * result will be present in that variable after the call. Passing a temporary |
| 89 | + * is useless in that context. |
15 | 90 | */
|
16 | 91 | template<typename C>
|
17 | 92 | class Span
|
18 | 93 | {
|
19 | 94 | C* m_data;
|
20 |
| - std::ptrdiff_t m_size; |
| 95 | + std::size_t m_size; |
| 96 | + |
| 97 | + template <class T> |
| 98 | + struct is_Span_int : public std::false_type {}; |
| 99 | + template <class T> |
| 100 | + struct is_Span_int<Span<T>> : public std::true_type {}; |
| 101 | + template <class T> |
| 102 | + struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{}; |
| 103 | + |
21 | 104 |
|
22 | 105 | public:
|
23 | 106 | constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
|
24 |
| - constexpr Span(C* data, std::ptrdiff_t size) noexcept : m_data(data), m_size(size) {} |
25 |
| - constexpr Span(C* data, C* end) noexcept : m_data(data), m_size(end - data) {} |
| 107 | + |
| 108 | + /** Construct a span from a begin pointer and a size. |
| 109 | + * |
| 110 | + * This implements a subset of the iterator-based std::span constructor in C++20, |
| 111 | + * which is hard to implement without std::address_of. |
| 112 | + */ |
| 113 | + template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> |
| 114 | + constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {} |
| 115 | + |
| 116 | + /** Construct a span from a begin and end pointer. |
| 117 | + * |
| 118 | + * This implements a subset of the iterator-based std::span constructor in C++20, |
| 119 | + * which is hard to implement without std::address_of. |
| 120 | + */ |
| 121 | + template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0> |
| 122 | + CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin) |
| 123 | + { |
| 124 | + ASSERT_IF_DEBUG(end >= begin); |
| 125 | + } |
| 126 | + |
| 127 | + /** Implicit conversion of spans between compatible types. |
| 128 | + * |
| 129 | + * Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type |
| 130 | + * C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding |
| 131 | + * C++20 std::span constructor. |
| 132 | + * |
| 133 | + * For example this means that a Span<T> can be converted into a Span<const T>. |
| 134 | + */ |
| 135 | + template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0> |
| 136 | + constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {} |
| 137 | + |
| 138 | + /** Default copy constructor. */ |
| 139 | + constexpr Span(const Span&) noexcept = default; |
| 140 | + |
| 141 | + /** Default assignment operator. */ |
| 142 | + Span& operator=(const Span& other) noexcept = default; |
| 143 | + |
| 144 | + /** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */ |
| 145 | + template <int N> |
| 146 | + constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {} |
| 147 | + |
| 148 | + /** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...). |
| 149 | + * |
| 150 | + * This implements a subset of the functionality provided by the C++20 std::span range-based constructor. |
| 151 | + * |
| 152 | + * To prevent surprises, only Spans for constant value types are supported when passing in temporaries. |
| 153 | + * Note that this restriction does not exist when converting arrays or other Spans (see above). |
| 154 | + */ |
| 155 | + template <typename V> |
| 156 | + constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND, |
| 157 | + typename std::enable_if<!is_Span<V>::value && |
| 158 | + std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value && |
| 159 | + std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) |
| 160 | + : m_data(other.data()), m_size(other.size()){} |
| 161 | + |
| 162 | + template <typename V> |
| 163 | + constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND, |
| 164 | + typename std::enable_if<!is_Span<V>::value && |
| 165 | + std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value && |
| 166 | + std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr) |
| 167 | + : m_data(other.data()), m_size(other.size()){} |
26 | 168 |
|
27 | 169 | constexpr C* data() const noexcept { return m_data; }
|
28 | 170 | constexpr C* begin() const noexcept { return m_data; }
|
29 | 171 | constexpr C* end() const noexcept { return m_data + m_size; }
|
30 |
| - constexpr std::ptrdiff_t size() const noexcept { return m_size; } |
31 |
| - constexpr C& operator[](std::ptrdiff_t pos) const noexcept { return m_data[pos]; } |
32 |
| - |
33 |
| - constexpr Span<C> subspan(std::ptrdiff_t offset) const noexcept { return Span<C>(m_data + offset, m_size - offset); } |
34 |
| - constexpr Span<C> subspan(std::ptrdiff_t offset, std::ptrdiff_t count) const noexcept { return Span<C>(m_data + offset, count); } |
35 |
| - constexpr Span<C> first(std::ptrdiff_t count) const noexcept { return Span<C>(m_data, count); } |
36 |
| - constexpr Span<C> last(std::ptrdiff_t count) const noexcept { return Span<C>(m_data + m_size - count, count); } |
| 172 | + CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept |
| 173 | + { |
| 174 | + ASSERT_IF_DEBUG(size() > 0); |
| 175 | + return m_data[0]; |
| 176 | + } |
| 177 | + CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept |
| 178 | + { |
| 179 | + ASSERT_IF_DEBUG(size() > 0); |
| 180 | + return m_data[m_size - 1]; |
| 181 | + } |
| 182 | + constexpr std::size_t size() const noexcept { return m_size; } |
| 183 | + constexpr bool empty() const noexcept { return size() == 0; } |
| 184 | + CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept |
| 185 | + { |
| 186 | + ASSERT_IF_DEBUG(size() > pos); |
| 187 | + return m_data[pos]; |
| 188 | + } |
| 189 | + CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept |
| 190 | + { |
| 191 | + ASSERT_IF_DEBUG(size() >= offset); |
| 192 | + return Span<C>(m_data + offset, m_size - offset); |
| 193 | + } |
| 194 | + CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept |
| 195 | + { |
| 196 | + ASSERT_IF_DEBUG(size() >= offset + count); |
| 197 | + return Span<C>(m_data + offset, count); |
| 198 | + } |
| 199 | + CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept |
| 200 | + { |
| 201 | + ASSERT_IF_DEBUG(size() >= count); |
| 202 | + return Span<C>(m_data, count); |
| 203 | + } |
| 204 | + CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept |
| 205 | + { |
| 206 | + ASSERT_IF_DEBUG(size() >= count); |
| 207 | + return Span<C>(m_data + m_size - count, count); |
| 208 | + } |
37 | 209 |
|
38 | 210 | friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
|
39 | 211 | friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
|
40 | 212 | friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
|
41 | 213 | friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
|
42 | 214 | friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
|
43 | 215 | friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
|
| 216 | + |
| 217 | + template <typename O> friend class Span; |
44 | 218 | };
|
45 | 219 |
|
46 |
| -/** Create a span to a container exposing data() and size(). |
47 |
| - * |
48 |
| - * This correctly deals with constness: the returned Span's element type will be |
49 |
| - * whatever data() returns a pointer to. If either the passed container is const, |
50 |
| - * or its element type is const, the resulting span will have a const element type. |
51 |
| - * |
52 |
| - * std::span will have a constructor that implements this functionality directly. |
53 |
| - */ |
54 |
| -template<typename A, int N> |
55 |
| -constexpr Span<A> MakeSpan(A (&a)[N]) { return Span<A>(a, N); } |
| 220 | +// MakeSpan helps constructing a Span of the right type automatically. |
| 221 | +/** MakeSpan for arrays: */ |
| 222 | +template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); } |
| 223 | +/** MakeSpan for temporaries / rvalue references, only supporting const output. */ |
| 224 | +template <typename V> constexpr auto MakeSpan(V&& v SPAN_ATTR_LIFETIMEBOUND) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); } |
| 225 | +/** MakeSpan for (lvalue) references, supporting mutable output. */ |
| 226 | +template <typename V> constexpr auto MakeSpan(V& v SPAN_ATTR_LIFETIMEBOUND) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; } |
| 227 | + |
| 228 | +/** Pop the last element off a span, and return a reference to that element. */ |
| 229 | +template <typename T> |
| 230 | +T& SpanPopBack(Span<T>& span) |
| 231 | +{ |
| 232 | + size_t size = span.size(); |
| 233 | + ASSERT_IF_DEBUG(size > 0); |
| 234 | + T& back = span[size - 1]; |
| 235 | + span = Span<T>(span.data(), size - 1); |
| 236 | + return back; |
| 237 | +} |
| 238 | + |
| 239 | +// Helper functions to safely cast to unsigned char pointers. |
| 240 | +inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; } |
| 241 | +inline unsigned char* UCharCast(unsigned char* c) { return c; } |
| 242 | +inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; } |
| 243 | +inline const unsigned char* UCharCast(const unsigned char* c) { return c; } |
| 244 | + |
| 245 | +// Helper function to safely convert a Span to a Span<[const] unsigned char>. |
| 246 | +template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; } |
56 | 247 |
|
57 |
| -template<typename V> |
58 |
| -constexpr Span<typename std::remove_pointer<decltype(std::declval<V>().data())>::type> MakeSpan(V& v) { return Span<typename std::remove_pointer<decltype(std::declval<V>().data())>::type>(v.data(), v.size()); } |
| 248 | +/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */ |
| 249 | +template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); } |
59 | 250 |
|
60 | 251 | #endif
|
0 commit comments