-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchamber.py
149 lines (125 loc) · 6.46 KB
/
chamber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from geometry import *
from constants import *
from numba import jit
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import math, time
class chamber:
def __init__(self, idNumber, length, designX, designY, designAngle, actualX, actualY, actualAngle, accuracy, stepSizes):
self.id = idNumber
self.length = length
self.accuracy = accuracy
self.DONE = False
self.time = 0
self.stdDeviation = 0
self.designAngle = designAngle
self.designX = designX
self.designY = designY
self.designEndpoints = [[self.designX-self.length/2*math.cos(self.designAngle),self.designX+self.length/2*math.cos(self.designAngle)],[self.designY-self.length/2*math.sin(self.designAngle),self.designY+self.length/2*math.sin(self.designAngle)]]
self.actualAngle = actualAngle
self.actualX = actualX
self.actualY = actualY
self.actualEndpoints = [[self.actualX-self.length/2*math.cos(self.actualAngle),self.actualX+self.length/2*math.cos(self.actualAngle)],[self.actualY-self.length/2*math.sin(self.actualAngle),self.actualY+self.length/2*math.sin(self.actualAngle)]]
self.hit = [[],[]]
self.hitXOverY = []
self.track = [[],[]]
self.trackXOverY = []
self.stepSizes = stepSizes
self.countX, self.countY, self.countZ = 2, 2, 2
self.alignStep = [self.stepSizes[self.countX],self.stepSizes[self.countY],self.stepSizes[self.countZ]]
self.fitness = []
self.residualY = []
self.predictedResidual = []
def getResiduals(self, muonTrack, muonPath):
#find predicted hit i.e. "track"
interceptTrack = intersectAndHit(self.designEndpoints, muonTrack)
#did it hit the chamber
track =False
minVal, maxVal = min(self.designEndpoints[1]), max(self.designEndpoints[1])
if interceptTrack[1] < maxVal and interceptTrack[1] > minVal:
track = True
#find local dy/dx
trackSlope = returnLocalDxDy(self.designAngle, muonTrack)
transformedInterceptTrack = transformCord(self.designX, self.designY, self.designAngle, interceptTrack)
#now, lets find the actual hit:
hit = False
for index, point in enumerate(muonPath[0]):
if index == 0: continue
segment = [[muonPath[0][index-1], muonPath[0][index]], [muonPath[1][index-1], muonPath[1][index]]]
interceptHit = intersectAndHit(self.actualEndpoints, segment)
#did it hit the chamber
minVal, maxVal = min(self.actualEndpoints[1]), max(self.actualEndpoints[1])
if interceptHit[1] < maxVal and interceptHit[1] > minVal:
hit = True
if hit:
hitSlope = returnLocalDxDy(self.actualAngle, segment)
transformedInterceptHit = transformCord(self.actualX, self.actualY, self.actualAngle, interceptHit)
break
if hit and track:
self.hit[0].append(transformedInterceptHit[0])
self.hit[1].append(transformedInterceptHit[1])
self.hitXOverY.append(hitSlope)
self.track[0].append(transformedInterceptTrack[0])
self.track[1].append(transformedInterceptTrack[1])
self.trackXOverY.append(trackSlope)
def resetData(self):
#print "design after align", self.designX, self.designY, self.designAngle, self.designEndpoints
self.hit = [[],[]]
self.hitXOverY = []
self.track = [[],[]]
self.trackXOverY = []
def align(self):
hitY = np.asarray(self.hit[1])
trackY = np.asarray(self.track[1])
dxdyTrack = np.asarray(self.trackXOverY)
self.residualY = trackY-hitY
print("Indices: ", self.countX, self.countY, self.countZ)
self.alignStep = [self.stepSizes[self.countX],self.stepSizes[self.countY],self.stepSizes[self.countZ]]
#print("AlignSteps: ", self.alignStep)
possibleXDisplacements = np.linspace(-self.alignStep[0], self.alignStep[0], 10)
possibleYDisplacements = np.linspace(-self.alignStep[1], self.alignStep[1], 10)
possibleAngleDisplacements = np.linspace(-self.alignStep[2], self.alignStep[2], 10)
minValue = 100
correctedPostion = [0,0,0]
for xDis in possibleXDisplacements:
for yDis in possibleYDisplacements:
for angleDis in possibleAngleDisplacements:
self.predictedResidual = yDis - dxdyTrack*xDis + hitY*dxdyTrack*angleDis
stdDev = np.mean(np.power(self.predictedResidual - self.residualY,2))
if minValue > stdDev:
minValue = stdDev
correctedPostion = [xDis, yDis, angleDis]
if abs(stdDev) < self.accuracy:
self.DONE = True
break
#print xDis, yDis, angleDis,stdDev
newX, newY, newAngle = correctedPostion[0], correctedPostion[1], correctedPostion[2]
self.designAngle = self.designAngle + newAngle
self.designX = self.designX + newX
self.designY = self.designY + newY
self.designEndpoints = [[ self.designX-self.length/2*math.cos( self.designAngle), self.designX+self.length/2*math.cos( self.designAngle)],[self.designY-self.length/2*math.sin( self.designAngle),self.designY+self.length/2*math.sin( self.designAngle)]]
#print("change in X: ", newX, "step size in X: ", self.stepSizes[self.countX])
if abs(newX) < self.stepSizes[self.countX]/2:
self.countX += 1
if abs(newY) < self.stepSizes[self.countY]/2:
self.countY += 1
if abs(newAngle) < self.stepSizes[self.countZ]/2:
self.countZ += 1
#print("design after align", self.designX, self.designY, self.designAngle, self.designEndpoints)
self.hit = [[],[]]
self.hitXOverY = []
self.track = [[],[]]
self.trackXOverY = []
def returnResidual(self):
return self.residualY
def isDone(self):
return self.DONE
def returnTime(self):
return self.time
def returnDesignEndpoints(self):
return self.designEndpoints
def returnActualEndpoints(self):
return self.actualEndpoints
def returnNumberOfIterations(self):
return ((self.countX+self.countY+self.countZ) - 6)