Skip to content

Commit 7813077

Browse files
brockclarkecgreene
andcommitted
DNA Methylation introduction section (#956)
* First few edits * final draft * Update citation-tags.tsv * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * changes in response to review here added refs and revised some language * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update content/04.study.md Co-Authored-By: Casey Greene <[email protected]> * Update 04.study.md * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Anthony Gitter <[email protected]> * delete Rhistory * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Restore webpage files * Update 04.study.md correcting spelling error for Roberston * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]> * Update content/citation-tags.tsv Co-Authored-By: Casey Greene <[email protected]>
1 parent f441693 commit 7813077

File tree

2 files changed

+42
-0
lines changed

2 files changed

+42
-0
lines changed

content/04.study.md

+20
Original file line numberDiff line numberDiff line change
@@ -49,6 +49,26 @@ For example, the effects of cellular heterogeneity on basic biology and disease
4949

5050
### DNA methylation
5151

52+
DNA methylation, is the process of adding a methyl group to a cytosine in the context of a CpG dinucleotide.
53+
This DNA-level epigenetic modification regulates gene transcription, is critical in development, and alterations to DNA methylation are well-established as contributing to pathophysiology of many diseases including cancers [@tag:Robertson2005],[@tag:Feinberg2018].
54+
Studies of DNA methylation have demonstrated the fundamental role of DNA methylation in cell lineage specification starting with stem cell differentiation [@tag:Meissner2008], [@tag:Nazor2012], as well as a strong relationship of DNA methylation with aging phenotypes [@tag:Kwabi-Addo2007], [@tag:Fraga2005], and pathogenesis in response to environmental exposures [@tag:Christensen2009], [@tag:Relton2010].
55+
56+
Traditional analytic approaches to DNA methylation data often focus on estimating differential DNA methylation between groups or related with an outcome using linear mixed effects models, so-called epigenome-wide association studies (EWAS) [@tag:Laird2010], [@tag:Wilhelm-Benartzi2013], [@tag:Liu2013], [@tag:Teschendorff2017].
57+
In addition, a growing application of DNA methylation measures is to infer cellular or subject phenotypes from samples and either examine the relation of these phenotypes with outcomes or disease states directly, and/or include them in models as covariates [@tag:Titus2017], [@tag:Salas2018_GR], [@tag:Zhang2019], [@tag:Horvath2014], [@tag:Quach2017].
58+
For example, inference of subject age using DNA methylation clock approaches are established [@tag:Horvath2013], and are starting to be applied to test the relation of biological age with disease risk and outcomes [@tag:Kresovich2019].
59+
Different cell types have different DNA methylation profiles.
60+
A novel approach to immunophenotyping combines measurements with Reference DNA methylation profiles of leukocytes, which are available, to infer immune cell type proportions [@tag:Houseman2012],[@tag:Salas2018].
61+
This strategy is particularly helpful when only DNA is available from a sample.
62+
Cell type inference is important for adjusting for cell-type composition in epigenome-wide association studies [@tag:Teschendorff2017].
63+
While reference-based libraries have strong predictive value for immune cell type estimation and has broad utility, cell composition mixtures per se, and methods to incorporate estimates of mixtures pose important considerations on the interpretation of underlying biology associated with disease manifestations and phenotypes.
64+
When a reference library is not available for use, methods that do not rely on these reference libraries, so called reference-free deconvolution [@tag:Houseman2016], are available to decompose signal purported to be contributed by cell types.
65+
However, using reference-free cell type proportion estimates as potential confounders in adjusted models can be overly conservative as as outcome-associated variation in DNA methylation may be decomposed into putative cell type estimates.
66+
Additional validated reference-based libraries for other tissue types, advancements in reference-free deconvolution methods, and application of deep learning methods are expected to provide new opportunities to understand and interpret DNA methylation in human health and disease.
67+
68+
Deep learning approaches have numerous potential applications for DNA methylation data.
69+
Imputation methods that capture complex interactions between different regions of DNA can expand the number of CpG sites whose DNA methylation state can be studied, and ideally these methods can derive their own informative, biologically-relevant features.
70+
The primary deep learning methods developed to date focus on: 1) estimating regions of methylation status and imputing missing methylation values, 2) performing classification and regression tasks, and 3) using the latent embeddings of methylation states to derive biologically meaningful features, infer interpolated disease states, and uncover CpG sites that aid the above prediction tasks.
71+
5272
#### Inference, imputation, and prediction
5373

5474
Deep learning approaches are beginning to help address some of the current limitations of feature-by-feature analysis approaches to DNA methylation data and may help uncover additional important features necessary to understand the biological underpinnings behind different pathological states.

content/citation-tags.tsv

+22
Original file line numberDiff line numberDiff line change
@@ -41,6 +41,7 @@ Chen2015_trans_species doi:10.1093/bioinformatics/btv315
4141
Choi2016_retain arxiv:1608.05745
4242
Choi2016_gram arxiv:1611.07012
4343
Chollet2016_xception arxiv:1610.02357
44+
Christensen2009 doi:10.1371/journal.pgen.1000602
4445
Chryssolouris1996_confidence doi:10.1109/72.478409
4546
Ciresan2013_mitosis doi:10.1007/978-3-642-40763-5_51
4647
Coates2013_cots_hpc url:http://www.jmlr.org/proceedings/papers/v28/coates13.html
@@ -71,8 +72,10 @@ Esfahani2016_melanoma doi:10.1109/EMBC.2016.7590963
7172
Essinger2010_taxonomic doi:10.1109/IJCNN.2010.5596644
7273
Esteva2017_skin_cancer_nature doi:10.1038/nature21056
7374
Faruqi url:http://alifar76.github.io/sklearn-metrics/
75+
Feinberg2018 doi:10.1056/NEJMra1402513
7476
Finnegan2017_maximum doi:10.1101/105957
7577
Fong2017_perturb doi:10.1109/ICCV.2017.371
78+
Fraga2005 doi:10.1073/pnas.0500398102
7679
Fu2019 doi:10.1109/TCBB.2019.2909237
7780
Gal2015_dropout arxiv:1506.02142
7881
Gaublomme2015_th17 doi:10.1016/j.cell.2015.11.009
@@ -100,6 +103,10 @@ Hinton2015_dk arxiv:1503.02531v1
100103
Hochreiter doi:10.1093/bioinformatics/btm247
101104
Hoff doi:10.1093/nar/gkp327
102105
Horton1992_assessment doi:10.1093/nar/20.16.4331
106+
Horvath2013 doi:10.1186/gb-2013-14-10-r115
107+
Horvath2014 doi:10.1073/pnas.1412759111
108+
Houseman2012 doi:10.1186/1471-2105-13-86
109+
Houseman2016 doi:10.1186/s12859-016-1140-4
103110
Hubara2016_qnn arxiv:1609.07061
104111
Huddar2016_predicting doi:10.1109/ACCESS.2016.2618775
105112
Hughes2016_macromol_react doi:10.1021/acscentsci.6b00162
@@ -128,11 +135,14 @@ Kooi2016_mamm_lesions doi:10.1016/j.media.2016.07.007
128135
Kooi2017_mamm_tl doi:10.1002/mp.12110
129136
Korfiatis2017 doi:10.1007/s10278-017-0009-z
130137
Kraus2017_deeploc doi:10.15252/msb.20177551
138+
Kresovich2019 doi:10.1093/jnci/djz020
131139
Krizhevsky2013_nips_cnn url:https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
132140
Krizhevsky2014_weird_trick arxiv:1404.5997
141+
Kwabi-Addo2007 doi:10.1158/1078-0432.CCR-07-0085
133142
Khwaja2017 doi:10.1109/BIOCAS.2017.8325078
134143
Khwaja2018 arxiv:1810.01243
135144
Lacey2016_dl_fpga arxiv:1602.04283
145+
Laird2010 doi:10.1038/nrg2732
136146
Lakhani2017_radiography doi:10.1148/radiol.2017162326
137147
Lanchantin2016_motif arxiv:1608.03644
138148
Lee2016_deeptarget arxiv:1603.09123v2
@@ -150,6 +160,7 @@ Lipton2015_lstm arxiv:1510.07641
150160
Litjens2016_histopath_survey doi:10.1038/srep26286
151161
Litjens2017_medimage_survey doi:10.1016/j.media.2017.07.005
152162
Lisboa2006_review doi:10.1016/j.neunet.2005.10.007
163+
Liu2013 doi:10.1038/nbt.2487
153164
Liu doi:10.1371/journal.pone.0053253
154165
Liu2016_towards arxiv:1604.07043
155166
Liu2016_sc_transcriptome doi:10.12688/f1000research.7223.1
@@ -169,6 +180,7 @@ Mapreduce doi:10.1145/1327452.1327492
169180
Mayr2016_deep_tox doi:10.3389/fenvs.2015.00080
170181
McHardy doi:10.1038/nmeth976
171182
McHardy2 doi:10.7717/peerj.1603
183+
Meissner2008 doi:10.1038/nature07107
172184
Metaphlan doi:10.1038/nmeth.2066
173185
Meng2016_mllib arxiv:1505.06807
174186
Min2016_deepenhancer doi:10.1109/BIBM.2016.7822593
@@ -179,6 +191,7 @@ Mrzelj url:https://repozitorij.uni-lj.si/IzpisGradiva.php?id=85515
179191
matis doi:10.1016/S0097-8485(96)80015-5
180192
nbc doi:10.1093/bioinformatics/btq619
181193
Murdoch2017_automatic arxiv:1702.02540
194+
Nazor2012 doi:10.1016/j.stem.2012.02.013
182195
Nemati2016_rl doi:10.1109/EMBC.2016.7591355
183196
Ni2018 doi:10.1101/385849
184197
Nguyen2014_adversarial arxiv:1412.1897v4
@@ -200,6 +213,7 @@ PerezSianes2016_screening doi:10.1007/978-3-319-40126-3_2
200213
Phymm doi:10.1038/nmeth.1358
201214
Poplin2016_deepvariant doi:10.1101/092890
202215
Pratt2016_dr doi:10.1016/j.procs.2016.07.014
216+
Quach2017 doi:10.18632/aging.101168
203217
Quang2017_factor doi:10.1101/151274
204218
Qin2017_onehot doi:10.1371/journal.pcbi.1005403
205219
Qiu2017_graph_embedding doi:10.1101/110668
@@ -212,13 +226,17 @@ Rakhlin2018_histology doi:10.1101/259911
212226
Ramsundar2015_multitask_drug arxiv:1502.02072
213227
Ranganath2016_deep arxiv:1608.02158
214228
Raina2009_gpu doi:10.1145/1553374.1553486
229+
Relton2010 doi:10.1371/journal.pmed.1000356
215230
Ribeiro2016_lime arxiv:1602.04938
231+
Robertson2005 doi:10.1038/nrg1655
216232
Rogers2010_fingerprints doi:10.1021/ci100050t
217233
Roth2015_view_agg_cad doi:10.1109/TMI.2015.2482920
218234
Romero2017_diet url:https://openreview.net/pdf?id=Sk-oDY9ge
219235
Rosenberg2015_synthetic_seqs doi:10.1016/j.cell.2015.09.054
220236
Russakovsky2015_imagenet doi:10.1007/s11263-015-0816-y
221237
Sa2015_buckwild pmcid:PMC4907892
238+
Salas2018_GR doi:10.1101/gr.233213.117
239+
Salas2018 doi:10.1186/s13059-018-1448-7
222240
Salzberg doi:10.1186/1471-2105-11-544
223241
Schatz2010_dna_cloud doi:10.1038/nbt0710-691
224242
Schmidhuber2014_dnn_overview doi:10.1016/j.neunet.2014.09.003
@@ -261,7 +279,9 @@ Tan2015_adage doi:10.1128/mSystems.00025-15
261279
Tan2016_eadage doi:10.1101/078659
262280
TAC-ELM doi:10.1142/S0219720012500151
263281
TensorFlow arxiv:1603.04467
282+
Teschendorff2017 doi:10.2217/epi-2016-0153
264283
Tian2019 doi:10.1186/s12864-019-5488-5
284+
Titus2017 doi:10.1093/hmg/ddx275
265285
Torracinta2016_deep_snp doi:10.1101/097469
266286
Torracinta2016_sim doi:10.1101/079087
267287
Tu1996_anns doi:10.1016/S0895-4356(96)00002-9
@@ -276,6 +296,7 @@ Wang2016_protein_contact doi:10.1371/journal.pcbi.1005324
276296
Wasson1985_clinical doi:10.1056/NEJM198509263131306
277297
WayGreene2017_eval arxiv:1711.04828
278298
WayGreene2017_tybalt doi:10.1101/174474
299+
Wilhelm-Benartzi2013 doi:10.1038/bjc.2013.496
279300
Word2Vec arxiv:1301.3781
280301
wgsquikr doi:10.1371/journal.pone.0091784
281302
Wu2017_molecule_net doi:10.1039/C7SC02664A
@@ -294,6 +315,7 @@ Zeng2015 doi:10.1186/s12859-015-0553-9
294315
Zeng2016_convolutional doi:10.1093/bioinformatics/btw255
295316
Zhang2015_multitask_tl doi:10.1145/2783258.2783304
296317
Zhang2017_generalization arxiv:1611.03530v2
318+
Zhang2019 doi:10.1186/s12885-019-5932-6
297319
Zhou2015_deep_sea doi:10.1038/nmeth.3547
298320
Zhu2016_advers_mamm doi:10.1101/095786
299321
Zhu2016_mult_inst_mamm doi:10.1101/095794

0 commit comments

Comments
 (0)