-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathasync_main.py
143 lines (124 loc) · 5.72 KB
/
async_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python
# Copyright 2024 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Demonstrates how to connect to Cloud Bigtable and run some basic operations with the async APIs
Prerequisites:
- Create a Cloud Bigtable instance.
https://cloud.google.com/bigtable/docs/creating-instance
- Set your Google Application Default Credentials.
https://developers.google.com/identity/protocols/application-default-credentials
"""
import argparse
import asyncio
from ..utils import wait_for_table
# [START bigtable_async_hw_imports]
from google.cloud import bigtable
from google.cloud.bigtable.data import row_filters
from google.cloud.bigtable.data import RowMutationEntry
from google.cloud.bigtable.data import SetCell
from google.cloud.bigtable.data import ReadRowsQuery
# [END bigtable_async_hw_imports]
async def main(project_id, instance_id, table_id):
# [START bigtable_async_hw_connect]
client = bigtable.data.BigtableDataClientAsync(project=project_id)
table = client.get_table(instance_id, table_id)
# [END bigtable_async_hw_connect]
# [START bigtable_async_hw_create_table]
from google.cloud.bigtable import column_family
# the async client only supports the data API. Table creation as an admin operation
# use admin client to create the table
print("Creating the {} table.".format(table_id))
admin_client = bigtable.Client(project=project_id, admin=True)
admin_instance = admin_client.instance(instance_id)
admin_table = admin_instance.table(table_id)
print("Creating column family cf1 with Max Version GC rule...")
# Create a column family with GC policy : most recent N versions
# Define the GC policy to retain only the most recent 2 versions
max_versions_rule = column_family.MaxVersionsGCRule(2)
column_family_id = "cf1"
column_families = {column_family_id: max_versions_rule}
if not admin_table.exists():
admin_table.create(column_families=column_families)
else:
print("Table {} already exists.".format(table_id))
# [END bigtable_async_hw_create_table]
try:
# let table creation complete
wait_for_table(admin_table)
# [START bigtable_async_hw_write_rows]
print("Writing some greetings to the table.")
greetings = ["Hello World!", "Hello Cloud Bigtable!", "Hello Python!"]
mutations = []
column = "greeting"
for i, value in enumerate(greetings):
# Note: This example uses sequential numeric IDs for simplicity,
# but this can result in poor performance in a production
# application. Since rows are stored in sorted order by key,
# sequential keys can result in poor distribution of operations
# across nodes.
#
# For more information about how to design a Bigtable schema for
# the best performance, see the documentation:
#
# https://cloud.google.com/bigtable/docs/schema-design
row_key = "greeting{}".format(i).encode()
row_mutation = RowMutationEntry(
row_key, SetCell(column_family_id, column, value)
)
mutations.append(row_mutation)
await table.bulk_mutate_rows(mutations)
# [END bigtable_async_hw_write_rows]
# [START bigtable_async_hw_create_filter]
# Create a filter to only retrieve the most recent version of the cell
# for each column across entire row.
row_filter = row_filters.CellsColumnLimitFilter(1)
# [END bigtable_async_hw_create_filter]
# [START bigtable_async_hw_get_with_filter]
# [START bigtable_async_hw_get_by_key]
print("Getting a single greeting by row key.")
key = "greeting0".encode()
row = await table.read_row(key, row_filter=row_filter)
cell = row.cells[0]
print(cell.value.decode("utf-8"))
# [END bigtable_async_hw_get_by_key]
# [END bigtable_async_hw_get_with_filter]
# [START bigtable_async_hw_scan_with_filter]
# [START bigtable_async_hw_scan_all]
print("Scanning for all greetings:")
query = ReadRowsQuery(row_filter=row_filter)
async for row in await table.read_rows_stream(query):
cell = row.cells[0]
print(cell.value.decode("utf-8"))
# [END bigtable_async_hw_scan_all]
# [END bigtable_async_hw_scan_with_filter]
finally:
# [START bigtable_async_hw_delete_table]
# the async client only supports the data API. Table deletion as an admin operation
# use admin client to create the table
print("Deleting the {} table.".format(table_id))
admin_table.delete()
# [END bigtable_async_hw_delete_table]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("project_id", help="Your Cloud Platform project ID.")
parser.add_argument(
"instance_id", help="ID of the Cloud Bigtable instance to connect to."
)
parser.add_argument(
"--table", help="Table to create and destroy.", default="Hello-Bigtable"
)
args = parser.parse_args()
asyncio.run(main(args.project_id, args.instance_id, args.table))