This repository was archived by the owner on Sep 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathCreateTrainingPipelineCustomTrainingManagedDatasetSample.java
145 lines (129 loc) · 6.23 KB
/
CreateTrainingPipelineCustomTrainingManagedDatasetSample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package aiplatform;
// [START aiplatform_create_training_pipeline_custom_training_managed_dataset_sample]
import com.google.cloud.aiplatform.v1beta1.GcsDestination;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
public class CreateTrainingPipelineCustomTrainingManagedDatasetSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String displayName = "DISPLAY_NAME";
String modelDisplayName = "MODEL_DISPLAY_NAME";
String datasetId = "DATASET_ID";
String annotationSchemaUri = "ANNOTATION_SCHEMA_URI";
String trainingContainerSpecImageUri = "TRAINING_CONTAINER_SPEC_IMAGE_URI";
String modelContainerSpecImageUri = "MODEL_CONTAINER_SPEC_IMAGE_URI";
String baseOutputUriPrefix = "BASE_OUTPUT_URI_PREFIX";
createTrainingPipelineCustomTrainingManagedDatasetSample(
project,
displayName,
modelDisplayName,
datasetId,
annotationSchemaUri,
trainingContainerSpecImageUri,
modelContainerSpecImageUri,
baseOutputUriPrefix);
}
static void createTrainingPipelineCustomTrainingManagedDatasetSample(
String project,
String displayName,
String modelDisplayName,
String datasetId,
String annotationSchemaUri,
String trainingContainerSpecImageUri,
String modelContainerSpecImageUri,
String baseOutputUriPrefix)
throws IOException {
PipelineServiceSettings settings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient client = PipelineServiceClient.create(settings)) {
JsonArray jsonArgs = new JsonArray();
jsonArgs.add("--model-dir=$(AIP_MODEL_DIR)");
// training_task_inputs
JsonObject jsonTrainingContainerSpec = new JsonObject();
jsonTrainingContainerSpec.addProperty("imageUri", trainingContainerSpecImageUri);
// AIP_MODEL_DIR is set by the service according to baseOutputDirectory.
jsonTrainingContainerSpec.add("args", jsonArgs);
JsonObject jsonMachineSpec = new JsonObject();
jsonMachineSpec.addProperty("machineType", "n1-standard-8");
JsonObject jsonTrainingWorkerPoolSpec = new JsonObject();
jsonTrainingWorkerPoolSpec.addProperty("replicaCount", 1);
jsonTrainingWorkerPoolSpec.add("machineSpec", jsonMachineSpec);
jsonTrainingWorkerPoolSpec.add("containerSpec", jsonTrainingContainerSpec);
JsonArray jsonWorkerPoolSpecs = new JsonArray();
jsonWorkerPoolSpecs.add(jsonTrainingWorkerPoolSpec);
JsonObject jsonBaseOutputDirectory = new JsonObject();
jsonBaseOutputDirectory.addProperty("outputUriPrefix", baseOutputUriPrefix);
JsonObject jsonTrainingTaskInputs = new JsonObject();
jsonTrainingTaskInputs.add("workerPoolSpecs", jsonWorkerPoolSpecs);
jsonTrainingTaskInputs.add("baseOutputDirectory", jsonBaseOutputDirectory);
Value.Builder trainingTaskInputsBuilder = Value.newBuilder();
JsonFormat.parser().merge(jsonTrainingTaskInputs.toString(), trainingTaskInputsBuilder);
Value trainingTaskInputs = trainingTaskInputsBuilder.build();
// model_to_upload
ModelContainerSpec modelContainerSpec =
ModelContainerSpec.newBuilder().setImageUri(modelContainerSpecImageUri).build();
Model model =
Model.newBuilder()
.setDisplayName(modelDisplayName)
.setContainerSpec(modelContainerSpec)
.build();
GcsDestination gcsDestination =
GcsDestination.newBuilder().setOutputUriPrefix(baseOutputUriPrefix).build();
// input_data_config
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder()
.setDatasetId(datasetId)
.setAnnotationSchemaUri(annotationSchemaUri)
.setGcsDestination(gcsDestination)
.build();
// training_task_definition
String customTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/custom_task_1.0.0.yaml";
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(displayName)
.setInputDataConfig(inputDataConfig)
.setTrainingTaskDefinition(customTaskDefinition)
.setTrainingTaskInputs(trainingTaskInputs)
.setModelToUpload(model)
.build();
LocationName parent = LocationName.of(project, location);
TrainingPipeline response = client.createTrainingPipeline(parent, trainingPipeline);
System.out.format("response: %s\n", response);
System.out.format("Name: %s\n", response.getName());
}
}
}
// [END aiplatform_create_training_pipeline_custom_training_managed_dataset_sample]