This repository has been archived by the owner on Sep 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathUpdateFeaturestoreSample.java
98 lines (88 loc) · 4.24 KB
/
UpdateFeaturestoreSample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
/*
* Copyright 2022 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Updates the parameters of a single featurestore. See
* https://cloud.google.com/vertex-ai/docs/featurestore/setup before running
* the code snippet
*/
package aiplatform;
// [START aiplatform_update_featurestore_sample]
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1beta1.Featurestore;
import com.google.cloud.aiplatform.v1beta1.Featurestore.OnlineServingConfig;
import com.google.cloud.aiplatform.v1beta1.Featurestore.OnlineServingConfig.Scaling;
import com.google.cloud.aiplatform.v1beta1.FeaturestoreName;
import com.google.cloud.aiplatform.v1beta1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1beta1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1beta1.UpdateFeaturestoreOperationMetadata;
import com.google.cloud.aiplatform.v1beta1.UpdateFeaturestoreRequest;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class UpdateFeaturestoreSample {
public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String featurestoreId = "YOUR_FEATURESTORE_ID";
int minNodeCount = 2;
int maxNodeCount = 4;
String location = "us-central1";
String endpoint = "us-central1-aiplatform.googleapis.com:443";
int timeout = 300;
updateFeaturestoreSample(
project, featurestoreId, minNodeCount, maxNodeCount, location, endpoint, timeout);
}
static void updateFeaturestoreSample(
String project,
String featurestoreId,
int minNodeCount,
int maxNodeCount,
String location,
String endpoint,
int timeout)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
FeaturestoreServiceSettings featurestoreServiceSettings =
FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (FeaturestoreServiceClient featurestoreServiceClient =
FeaturestoreServiceClient.create(featurestoreServiceSettings)) {
OnlineServingConfig.Builder builderValue =
OnlineServingConfig.newBuilder()
.setScaling(
Scaling.newBuilder().setMinNodeCount(minNodeCount).setMaxNodeCount(maxNodeCount));
Featurestore featurestore =
Featurestore.newBuilder()
.setName(FeaturestoreName.of(project, location, featurestoreId).toString())
.setOnlineServingConfig(builderValue)
.build();
UpdateFeaturestoreRequest request =
UpdateFeaturestoreRequest.newBuilder().setFeaturestore(featurestore).build();
OperationFuture<Featurestore, UpdateFeaturestoreOperationMetadata> updateFeaturestoreFuture =
featurestoreServiceClient.updateFeaturestoreAsync(request);
System.out.format(
"Operation name: %s%n", updateFeaturestoreFuture.getInitialFuture().get().getName());
System.out.println("Waiting for operation to finish...");
Featurestore featurestoreResponse = updateFeaturestoreFuture.get(timeout, TimeUnit.SECONDS);
System.out.println("Update Featurestore Response");
System.out.format("Name: %s%n", featurestoreResponse.getName());
}
}
}
// [END aiplatform_update_featurestore_sample]