This repository was archived by the owner on Sep 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathCreateTrainingPipelineCustomJobSample.java
119 lines (105 loc) · 5.22 KB
/
CreateTrainingPipelineCustomJobSample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package aiplatform;
// [START aiplatform_create_training_pipeline_custom_job_sample]
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
public class CreateTrainingPipelineCustomJobSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String displayName = "DISPLAY_NAME";
String modelDisplayName = "MODEL_DISPLAY_NAME";
String containerImageUri = "CONTAINER_IMAGE_URI";
String baseOutputDirectoryPrefix = "BASE_OUTPUT_DIRECTORY_PREFIX";
createTrainingPipelineCustomJobSample(
project, displayName, modelDisplayName, containerImageUri, baseOutputDirectoryPrefix);
}
static void createTrainingPipelineCustomJobSample(
String project,
String displayName,
String modelDisplayName,
String containerImageUri,
String baseOutputDirectoryPrefix)
throws IOException {
PipelineServiceSettings settings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient client = PipelineServiceClient.create(settings)) {
JsonObject jsonMachineSpec = new JsonObject();
jsonMachineSpec.addProperty("machineType", "n1-standard-4");
JsonArray jsonArgs = new JsonArray();
jsonArgs.add("--model_dir=$(AIP_MODEL_DIR)");
// A working docker image can be found at
// gs://cloud-samples-data/ai-platform/mnist_tfrecord/custom_job
JsonObject jsonContainerSpec = new JsonObject();
jsonContainerSpec.addProperty("imageUri", containerImageUri);
jsonContainerSpec.add("args", jsonArgs);
JsonObject jsonJsonWorkerPoolSpec0 = new JsonObject();
jsonJsonWorkerPoolSpec0.addProperty("replicaCount", 1);
jsonJsonWorkerPoolSpec0.add("machineSpec", jsonMachineSpec);
jsonJsonWorkerPoolSpec0.add("containerSpec", jsonContainerSpec);
JsonArray jsonWorkerPoolSpecs = new JsonArray();
jsonWorkerPoolSpecs.add(jsonJsonWorkerPoolSpec0);
JsonObject jsonBaseOutputDirectory = new JsonObject();
// The GCS location for outputs must be accessible by the project's AI Platform
// service account.
jsonBaseOutputDirectory.addProperty("output_uri_prefix", baseOutputDirectoryPrefix);
JsonObject jsonTrainingTaskInputs = new JsonObject();
jsonTrainingTaskInputs.add("workerPoolSpecs", jsonWorkerPoolSpecs);
jsonTrainingTaskInputs.add("baseOutputDirectory", jsonBaseOutputDirectory);
Value.Builder trainingTaskInputsBuilder = Value.newBuilder();
JsonFormat.parser().merge(jsonTrainingTaskInputs.toString(), trainingTaskInputsBuilder);
Value trainingTaskInputs = trainingTaskInputsBuilder.build();
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/custom_task_1.0.0.yaml";
String imageUri = "gcr.io/cloud-aiplatform/prediction/tf-cpu.1-15:latest";
ModelContainerSpec containerSpec =
ModelContainerSpec.newBuilder().setImageUri(imageUri).build();
Model modelToUpload =
Model.newBuilder()
.setDisplayName(modelDisplayName)
.setContainerSpec(containerSpec)
.build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(displayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(trainingTaskInputs)
.setModelToUpload(modelToUpload)
.build();
LocationName parent = LocationName.of(project, location);
TrainingPipeline response = client.createTrainingPipeline(parent, trainingPipeline);
System.out.format("response: %s\n", response);
System.out.format("Name: %s\n", response.getName());
}
}
}
// [END aiplatform_create_training_pipeline_custom_job_sample]