-
Notifications
You must be signed in to change notification settings - Fork 604
/
Copy pathquickstart.js
73 lines (63 loc) · 2.34 KB
/
quickstart.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict';
async function main(
projectId,
computeRegion,
modelId,
filePath,
scoreThreshold
) {
// [START automl_quickstart]
const automl = require('@google-cloud/automl');
const fs = require('fs');
// Create client for prediction service.
const client = new automl.PredictionServiceClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const projectId = `The GCLOUD_PROJECT string, e.g. "my-gcloud-project"`;
// const computeRegion = `region-name, e.g. "us-central1"`;
// const modelId = `id of the model, e.g. “ICN723541179344731436”`;
// const filePath = `local text file path of content to be classified, e.g. "./resources/flower.png"`;
// const scoreThreshold = `value between 0.0 and 1.0, e.g. "0.5"`;
// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);
// Read the file content for prediction.
const content = fs.readFileSync(filePath, 'base64');
const params = {};
if (scoreThreshold) {
params.score_threshold = scoreThreshold;
}
// Set the payload by giving the content and type of the file.
const payload = {};
payload.image = {imageBytes: content};
// params is additional domain-specific parameters.
// currently there is no additional parameters supported.
const [response] = await client.predict({
name: modelFullId,
payload: payload,
params: params,
});
console.log('Prediction results:');
response.payload.forEach(result => {
console.log(`Predicted class name: ${result.displayName}`);
console.log(`Predicted class score: ${result.classification.score}`);
});
// [END automl_quickstart]
}
main(...process.argv.slice(2)).catch(err => {
console.error(err);
process.exitCode = 1;
});