This repository has been archived by the owner on Sep 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathhparams.py
63 lines (53 loc) · 1.83 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2018 Google, Inc.,
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hyperparameters used in this library."""
import tensorflow as tf
_DEFAULTS = dict(
# Number of latent units per time step
latent_size=4,
# Model parameters
obs_encoder_fc_layers=[256, 128],
obs_decoder_fc_hidden_layers=[256],
latent_decoder_fc_layers=[256],
rnn_hidden_sizes=[32],
# Default activation (relu/elu/etc.)
activation='relu',
# Postivitity constraint (softplus/exp/etc.)
positive_projection='softplus',
positive_eps=1e-5,
# VAE params
divergence_strength_start=1e-5, # scale on divergence penalty.
divergence_strength_half=1e5, # in global-steps.
vae_type='SRNN', # see vae.VAE_TYPES.
use_monte_carlo_kl=False,
srnn_use_res_q=True,
# Training parameters
learning_rate=0.0001,
l1_regularization=0.0,
l2_regularization=0.01,
batch_size=32,
sequence_size=5,
clip_gradient_norm=1.,
check_numerics=True,
# Evaluation parameters
log_prob_samples=10, # number of latent samples to average over.
)
def make_hparams(flag_value=None, **kwargs):
"""Initialize HParams with the defaults in this module."""
init = dict(_DEFAULTS)
init.update(kwargs)
ret = tf.contrib.training.HParams(**init)
if flag_value:
ret.parse(flag_value)
return ret